High throughput sequencing for the detection and characterization of new virus found in arracacha (Arracacia xanthorrhiza)
DOI:
https://doi.org/10.17268/sci.agropecu.2021.051Keywords:
Arracacha, siRNA sequencing, crinivirus, vitivirus, enamovirusAbstract
Arracacha is a root crop cultivated in several countries of South America. The commercial product, which is the storage root, has multiple nutritional properties: its fine starch makes it easily digestible, and it contains high levels of calcium and vitamin A. High throughput sequencing (HTS) technology has been applied successfully for virus discovery in different agricultural crops, and it has been proposed to apply it in routine pathogen detection. Using HTS, novel sequences related to crinivirus and vitivirus were identified in apparently symptomeless arracacha, which were assembled into contigs located in different positions of the genome. Based on those sequences’ primers were designed to amplify corresponding sequences from further arracacha accessions and potato plant samples collected from farmers’ fields in Colombia and Peru. It was possible to determine the near complete genomes of these viruses. In addition, sequences related to an enamovirus and ST9-like RNA were also identified in arracacha plants using HTS.
References
Adams, M. J., Candresse, T., Hammond, J., Kreuze, J. F., Martelli, G. P., et al. (2012). Family Betaflexiviridae. In: King, A. M. Q., Adams, M. J., Carstens, E. B., & Lefkowitz, E. J. (Eds.), Virus Taxonomy - Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, San Diego, pp 920-941.
Bester, R., Cook, G., & Maree, H. J. (2021). Citrus tristeza virus genotype detection using high-throughput sequencing. Viruses, 13(2), 168.
Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., & Watson, L. (1996). Viruses of plants. CAB International, University Press, Cambridge, Great Britain. 1484 p.
Fitzpatrick, A. H., Rupnik, A., O'Shea, H., Crispie, F., Keaveney, S., & Cotter, P. (2021). High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Frontiers in Microbiology, 12, 190.
Fuentes, S., Heider, B., Tasso, R. C., Romero, E., Zum Felde, T., & Kreuze, J. F. (2012) Complete genome sequence of a potyvirus infecting yam beans (Pachyrhizus spp.) in Peru. Archives of Virology, 157, 773–776.
Gamarra, H. A., Fuentes, S., Morales, F. J, Glover, R., Malumphy, C., & Barker, I. (2010). Bemisia afer sensu lato, a vector of sweet potato chlorotic stunt virus. Plant Diseases, 94, 510–514.
Hermann, M. (1997). Arracacha (Arracacia xanthorrhiza Bancroft). In: Andean roots and tubers: Ahipa, arracacha, maca and yacon. Promoting the conservation and use of underutilized and neglected crops. Hermann, M. and J. Heller (eds). 21. Institute of Plant Genetics and Crop Plant Research, Gatersleben/ International Plant Genetic Resources Institute, Rome, Italia, pp. 75-172.
Jones, R. A. C., & Kenten, R. H. (1978). Arracacha virus A, a newly reconized virus infecting arracacha (Arracacia xanthorrhiza, Umbeliferae) in the Peruvian Andes. Annals of Applied Biology, 90, 85-91.
Kavalappara, S. R., Milner, H., Konakalla, N. C., Morgan, K., Sparks, A. N., et al. (2021). High throughput sequencing-aided survey reveals widespread mixed infections of whitefly-transmitted viruses in cucurbits in Georgia, USA. Viruses, 13(6), 988.
Kenten, R. H., & Jones, R. A. C. (1979). Arracacha virus B, a second isometric virus infecting arracacha (Arracacia xanthorrhiza, Umbeliferae) in the Peruvian Andes. Annals of Applied Biology, 93, 31-36.
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular biology and evolution, 33(7), 1870-1874.
Kutnjak, D., Tamisier, L., Adams, I., Boonham, N., Candresse, T., et al. (2021). A primer on the analysis of high-throughput sequencing data for detection of plant viruses. Microorganisms, 9(4), 841.
Lizarraga, C. (1997). Progress in the identification of the viruses infecting Andean root and tuber crops. Seminar, International Potato Center, Lima, Peru.
Lizárraga, C., Chuquillanqui, C., & Jayasinghe, U. (1994). Una variante del virus del anillo necrótico de la papa (Potato black ringspot virus, PBRV) aislado de arracacha (Arracacia xanthorrhiza). Fitopatología (Lima), 29(2), 144-149.
Lizárraga, C., Santa Cruz, M., & Jayasinghe, U., (1996a) Detection of an isolate of Andean Potato latent virus in Ulluco (Ullucos tuberosus Caldas). Plant Disease, 80(3), 344.
Lizárraga, C., Santa Cruz, M., & Salazar, L. F. (1996b) First report of Potato Leafroll virus in ulluco (Ullucus tuberosus Caldas). Plant disease, 80(3), 344.
Lizárraga, C., Santa Cruz, M., Marca, J. L., & Salazar, L. F. (1999) La importancia de los virus que infectan a Ullucus tuberosus Caldas en el Perú. Fitopatología, 34(1), 22-28.
Martelli, G. P., Agranovsky, A. A., Bar-Joseph, M., Boscia, D., Candresse, T., et al. (2012). Family Closteroviridae. In: King, A.M.Q., Adams, M.J., Carstens, E.B., & Lefkowitz, E.J. (Eds.), Virus Taxonomy - Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, San Diego. Pp: 987-1001.
Oliveira, L. M., Orílio, A. F., Inoue-Nagata, A. K., & Blawid, R. (2017) A novel vitivirus-like sequence found in Arracacia xanthorrhiza plants by high throughput sequencing. Arch Virol, 162(7), 2141-2144.
Orilio, A. F., Dusi, A. N., Madeira, N. R., & Inoue-Nagata, A. (2009). Characterization of a member of a new Potyvirus species infecting arracacha in Brazil. Archives of Virology, 154, 181-185.
Orílio, A. F., Blawid, R., Costa, G. A., Gomes, S. S., Inoue-Nagata, T., et al. (2018) High-throughput sequencing reveals a novel closterovirus in arracacha (Arracacia xanthorrhiza). Archives of virology, 163(9), 2547-2550.
Santa Cruz, M. (1994). Aislamiento y caracterización parcial de un potyvirus de arracacha (Arracacia xanthorrhiza Bancroft). Tesis para optar el título de Licenciado en Biología, Microbiología y Parasitología. Univ. Nac. Pedro Ruiz Gallo. Lambayeque, Perú. 109 p.
Silvestre, R., Fuentes, S., Risco, R., Berrocal, A., Adams, I., et al. (2020). Characterization of distinct strains of an aphid-transmitted ilarvirus (Fam. Bromoviridae) infecting different hosts from South America. Virus research, 282, 197-944.
Soltani, N., Stevens, K. A., Klaassen, V., Hwang, M. S., Golino, D. A., & Al Rwahnih, M. (2021). Quality Assessment and Validation of High-Throughput Sequencing for Grapevine Virus Diagnostics. Viruses, 13(6), 1130.
Wu, Q, Ding, S. W., Zhang, Y., & Zhu, S. (2015). Identification of viruses and viroids by next-generation sequencing and homology-dependent and homology-independent algo-rithms. Annual review of phytopathology, 53, 425-444.
Zerbino, D., & Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 18, 821-829.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Joao De Souza, Segundo Fuentes, Giovanna Müller, Heidy Gamarra, Mónica Guzmán, Wilmer Cuellar, Jan Kreuze
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).