Molecular and ampelographic characterization of Pisco grapevine accessions conserved in a germplasm collection center of the Ica, Peru
DOI:
https://doi.org/10.17268/sci.agropecu.2021.057Keywords:
Pisco varieties, vacas criollas, SSR, Moscatel, PiscoAbstract
Pisco is a distillate of cultural and economic importance for Peru, made from heterogeneous vine varieties called "pisqueras", covered by a Pisco Denomination of Origin legislation. The aim was to confirm the varietal identity of eight accessions conserved in the Germplasm Collection of the Centre for Productive Innovation and Technology Transfer Agroindustrial Ica (CITEagroindustrial), using 9 standardized microsatellite loci (SSR) and 14 morphological descriptors according to the International Organisation of Vine and Wine (OIV) to identify grapevine varieties. The SSR molecular profiles of 7 accessions were identified as varieties registered in the Vitis International Variety Catalog (VIVC) and only one had no association. Of these, Mollar, Albilla, Italia, Quebranta and Uvina accessions, were associated with Mollar Cano (VIVC 7901), Palomino Fino (VIVC 8888), Muscat of Alexandria (VIVC 8241), Quebranta (VIVC 9840) and Jacquez (VIVC 5627), respectively. The SSR profile of the Torontel accession was not associated with any variety registered in the VIVC and the Negra Criolla and Moscatel accessions were associated with the Spanish variety Listan Prieto (VIVC 6860). According to the ampelographic observations, it was determined that Moscatel presented phenotypic variations with respect to Negra Criolla, although at the molecular level it was perfectly associated with Listan Prieto, indicating that it would be a clonal variation. In addition, 7 variables were discriminant to identify the accessions evaluated. The molecular and ampelographic analysis allowed to clarify the varietal identity of the accessions conserved at CITEagroindustrial, Ica, which plays a preponderant role as a reference regarding the identification of the varieties used for the elaboration of Pisco in Peru.
References
Alcalde, A. (2008). Cultivares viticolas Argentinas. Instituto Nacional de Tecnología Agropecuaria (INTA). 2a ed. C.A. de Buenos Aires. 146p.
Aliquó, G., Torres, R., Lacombe, T., Boursiquot, J. M., Laucou, V., et al. (2017). Identity and parentage of some South American grapevine cultivars present in Argentina. Australian Journal of Grape and Wine Research, 23(3), 452–460.
Botelho, G., Anjos, O., Estevinho, L. M., & Caldeira, I. (2020). Methanol in grape derived, fruit and honey spirits: A critical review on source, quality control, and legal limits. Processes, 8(12), 1–21.
Bowers, J. E., Dangl, G. S., & Meredith, C. P. (1999). Development and Characterization of Additional Microsatellite DNA Markers for Grape. American Journal of Enology and Viticulture, 50(3), 3.
Bowers, J. E., Dangl, G. S., Vignani, R., & Meredith, C. P. (1996). Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome, 39(4), 628–633.
Cáceres, H., Quispe, P., Pignataro, D., Orjeda, G., & Lacombe, T. (2017). Morphological characterization of grapevine varieties for Pisco production under conditions of the middle zone of the Ica valley, Peru. Scientia Agropecuaria, 8(May), 63–72.
Carbonell-Bejerano, P., Brun, C., Marcos, J. I., & Martinez-Zapater, J. M. (2017). ACENOLOGIA Claves moleculares de la variación somática en la vid. ACE Revista de Enología (159), 2. http://www.acenologia.com/cienciaytecnologia/claves_moleculares_somatica_cienc0217.htm
Carrier, G., Le Cunff, L., Dereeper, A., Legrand, D., Sabot, F., et al. (2012). Transposable elements are a major cause of somatic polymorphism in vitis vinifera L. PLoS ONE, 7(3), 1–10.
Indecopi. (2012). Reglamento de la Denominación de Origen Pisco. Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual. Perú. In: https://www.indecopi.gob.pe/documents/20195/200722/6+Reglamento_DO-PISCO.pdf/a2259836-69e6-4c8c-b403-f8c3c38f7039
Dauob, R., Makhoul, G., & Mahfoud, H. (2018). Genetic Diversity among Grapevine (Vitis Vinifera L.) Cultivars of Tartous Province (Syria) using Microsatellite Markers. International Journal of Agriculture & Environmental Science, 5(6), 54–58.
De Mendiburu, F., & Simon, R. (2015). Agricolae - Ten years of an open source statistical tool for experiments in breeding, agriculture and biology. PeerJ, 3, 0–17.
Doyle, J. J., & Doyle, J. L. (1990). A rapid total DNA preparation procedure for fresh plant tissue. Focus (12) 13–15).
García De Luján, A., Puertas, B., & Lara, M. (1990). Variedades de vid en Andalucía. Dirección General de Investigadores y Extensión Agrarias. Andalucía - España. 254p.
Huertas, L. (2004). Historia de la producción de vinos y piscos en el Perú. In Universum (Talca) 19(2).
Husson, F., Josse, J., Le, S., & Maintainer, J. M. (2020). Multivariate exploratory data analysis and data mining. In Cran 2.3(1) 1–130. Recuperado de: http://factominer.free.fr.
Ibacache, A., Zurita, A., Gonzáles, C., & Montoyai, A. (2015). Caracterización Genética y Agronómica de Variedades Pisqueras No tradicionales 39(4).
Işçi, B. (2019). Genetic relationships of some local and introduced grapes (Vitis vinifera L.) by microsatellite markers. Biotechnology and Biotechnological Equipment, 33(1), 1303–1310.
Jiménez-Cantizano, A., Muñoz-Martín, A., Amores-Arrocha, A., Sancho-Galán, P., & Palacios, V. (2020). Identification of red grapevine cultivars (Vitis vinifera l.) preserved in ancient vineyards in axarquia (Andalusia, Spain). Plants, 9(11), 1–10.
Kassambara, A., & Mundt, F. (2020). Extract and visualize the results of multivariate data Analyses. In Cran 1.0 (7), 84.
Labagnara, T., Bergamini, C., Caputo, A. R., & Cirigliano, P. (2018). Vitis vinifera L. germplasm diversity: A genetic and ampelometric study in ancient vineyards in the South of Basilicata region (Italy). Vitis - Journal of Grapevine Research, 57(1), 1–8.
Lacombe, T., Boursiquot, J. M., Laucou, V., Di Vecchi-Staraz, M., Péros, J. P., & This, P. (2013). Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theoretical and Applied Genetics, 126(2), 401–414.
Li, B., Jiang, J., Fan, X., Zhang, Y., Sun, H., Zhang, G., & Liu, C. (2017). Molecular characterization of Chinese grape landraces (Vitis L.) using microsatellite DNA markers. HortScience, 52(4), 533–540.
Lodhi, M. A., Ye, G. N., Weeden, N. F., & Reisch, B. I. (1994). A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Molecular Biology Reporter, 12(1), 6–13.
López, F. (2021). Brandy Production: Fundamentals and Recent Developments. In Winemaking (1a ed., p. 27).
Marsal, G., Mateo-Sanz, J. M., Canals, J. M., Zamora, F., & Fort, F. (2016). SSR analysis of 338 accessions planted in Penedès (Spain) reveals 28 unreported molecular profiles of Vitis vinifera L. American Journal of Enology and Viticulture, 67(4), 466–470.
Martínez-Zapater, J. M., Fernández, L., Torres-Pérez, R., Royo, C., Grimplet, J., et al. (2014). Base genética y molecular de la variación somática en la vid. I Jornada Del Grupo de Viticultura y Enología, 70, 47–53.
Mendoza, K., Torres, M. R., Aliquo, G. A., Prieto, J. A., Grados, M., & Mendiola, J. (2019). Molecular and morphological characterization of the grapevine cultivars “Italia” in the Ica and Cañete valleys (Peru). BIO Web of Conferences, 12, 01017.
Menevseoglu, A., Aykas, D. P., Hatta-Sakoda, B., Toledo-Herrera, V. H., & Rodriguez-Saona, L. E. (2021). Non-invasive monitoring of ethanol and methanol levels in grape-derived pisco distillate by vibrational spectroscopy. Sensors, 21(18), 6278.
Milla-Tapia, A., Cabezas, J. A., Cabello, F., Lacombe, T., Martínez-Zapater, J. M., Hinrichsen, P., & Cervera, M. T. (2007). Determining the Spanish origin of representative ancient American grapevine varieties. American Journal of Enology and Viticulture, 58(2), 242–251.
Miliordos, D. E., Merkouropoulos, G., Kogkou, C., Arseniou, S., Alatzas, A., et al. (2021). Explore the rare—molecular identification and wine evaluation of two autochthonous greek varieties: “karnachalades” and “bogialamades.” Plants, 10(8), 1556.
Morón, J. (2017). La vid en el Perú y la elaboración del Pisco en Ica. Cultura, Ciencia y Tecnología. ASDOPEN-UNMSM, 11, 14.
Narváez, C., Castro, M. H., Valenzuela, J., & Hinrichsen, P. (2001). Patrones genéticos de los cultivares de vides de vinificación más comúnmente usados en Chile basados en marcadores de microsatélites. Agricultura Técnica, 61(3), 249-261.
OIV. (2009). Lista de descriptores OIV para variedades de vid y especies de vitis. In Book: Vol. 2 .2a ed. Paris-Francia 215p.
OIV. (2013). Liste internationale des variétés de vigne et de leurs synonymes Internationale. Edicion 2013. 2a ed. Paris-Francia, 235p.
Popescu, C. F., & Crespan, M. (2018). Combining microsatellite markers and ampelography for better management of romanian grapevine germplasm collections. Notulae Scientia Biologicae, 10(2), 193–198.
Pszczólkowski, P., & Lacoste, P. (2016). Native varieties, an opportunity for chilean pisco. Revista de La Facultad de Ciencias Agrarias, 48(1), 239–251.
Rodrigues, J. (2021). Microsatellite DNA fingerprinting of a new vinifera red grapevine cultivar , Cabernet labrusco , indigenous to South Africa. ResearchGate, May.
Rodriguez-Torres, I. (2017). Variedades de vid cultivadas en Canarias: Descriptores morfológicos. caracterización morfoló-gica, molecular, agronómica y enológica (2da Ed., Issue 1). Imprenta Bonnet, S.l. 194p.
Rodríguez, J., & Matus, M. (2002). Ampelographic characteristics of the Torrontés Riojano. Rev. FCA UNCuyo, 1, 71–80.
Rodríguez, M. (2019). Estudio del origen genético de la variedad de vid Garnacha Blanca , de su diversidad fenotípica y de los efectos moleculares asociados a la variación en el color de la uva. Tesis Doctoral. Universidad de La Rioja. Repositorio Institucional - Universidad de La Rioja.
Sefc, K. M., Regner, F., Turetschek, E., Glössl, J., & Steinkellner, H. (1999). Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome, 42(3), 367–373.
This, P., Lacombe, T., & Thomas, M. R. (2006). Historical origins and genetic diversity of wine grapes. Trends in Genetics, 22, 511–519.
Thomas, M. R., & Scott, N. S. (1993). Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theoretical and Applied Genetics, 86(8), 985–990.
Vezzullli, S., Leonardellli, L., Malossimi, U., Estefanini, M., Velasco, R., & Moser, C. (2012). Pinot blanc and Pinot gris as arose and independent somatic mutations of pinot noir. Journal of Experimental Botany, 63(2), 695–709.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Aybel Almanza Cano, Hanna Cáceres Yparraguirre, María Del Rocío Torres, David Saravia Navarro, Raúl Blas Sevillano
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).