Effects of different amounts of crude glycerol supplementation on dry matter intake, milk yield, and milk quality of lactating dairy cows grazing on a Kikuyu grass pasture

Authors

DOI:

https://doi.org/10.17268/sci.agropecu.2021.053

Keywords:

biofuels, energy by-products, energy feedstuff, lactation performance, milk composition, tropical pasture

Abstract

The aim of this study was to determine the effects of different amounts of crude glycerol (CGL) on dry matter intake, milk yield, milk protein yield, and milk fatty acid profile of dairy cows grazing on a Kikuyu-based pasture. Six Holstein cows were used in the first third of lactation (mean ± SD 559 ± 22.5 kg body weight, 43 ± 10 days in milk, and 26.8 ± 1.2 kg milk/day) and were randomized within a replicated 3 × 3 Latin square arrangement. Animals grazed the Kikuyu grass and were supplemented with a commercial energy-protein concentrate at 1.0 kg/4.0 kg of milk. The experimental period was 69 days. The following treatments were administered: CGL0 (control, without glycerol), CGL1 (750 g/cow/day), and CGL2 (1,500 g/cow/day). The addition of 750 and 1,500 g of CGL did not affect grass and concentrate intake (P > 0.05). However, milk yield (FCM 3.5%) increased by 14.2% in the CGL2 group compared to that obtained in the control group (CGL0) (P = 0.02). The addition of 1,500 g of CGL to the diet resulted in a 2.1% greater yield of milk protein compared to that obtained with CGL0 treatment (P = 0.01). Further, the addition of 1,500 g of CGL did not impact grass intake, milk fat concentration, or fatty acid composition (P < 0.05). Thus, the inclusion of CGL as a co-product may be a nutritional strategy to increase the productivity of dairy production systems in tropical perennials, such as Kikuyu grass.

References

Acero-Camelo, A., Pabón, M. L., Fischer, G., & Carulla-Fornaguera, J. E. (2020). Optimum harvest time for Kikuyu grass (Cenchrus clandestinus) according to the number of leaves per tiller and nitrogen fertilization. Revista Facultad Nacional de Agronomía Medellín, 73(3), 9243–9253.

Ariko, T., Kass, M., Henno, M., Fievez, V., Kärt, O., et al. (2015). The effect of replacing barley with glycerol in the diet of dairy cows on rumen parameters and milk fatty acid profile. Animal Feed Science and Technology, 209, 69–78.

Bajramaj, D. L., Curtis, R. V., Kim, J. J. M., Corredig, M., Doelman, J., et al. (2017). Addition of glycerol to lactating cow diets stimulates dry matter intake and milk protein yield to a greater extent than addition of corn grain. Journal of Dairy Science, 100(8), 6139–6150.

Bodarski, R., Wertelecki, T., Bommer, F., & Gosiewski, S. (2005). The changes of metabolic status and lactation performance in dairy cows under feeding TMR with glycerin [glycerol] supplement at periparturient period. Electronic Journal of Polish Agricultural Universities. Series Animal Husbandry, 4(08).

Colmenares-Quintero, R. F., Rico-Cruz, C. J., Stansfield, K. E., & Colmenares-Quintero, J. C. (2020). Assessment of biofuels production in Colombia. Cogent Engineering, 7(1), 1740041.

Costa, A., Lopez-Villalobos, N., Sneddon, N. W., Shalloo, L., Franzoi, M., et al. (2019). Invited review: Milk lactose—Current status and future challenges in dairy cattle. Journal of Dairy Science, 102(7), 5883–5898.

De Vries, M. F. W. (1995). Estimating forage intake and quality in grazing cattle: a reconsideration of the hand-plucking method. Rangeland Ecology & Management/Journal of Range Management Archives, 48(4), 370–375.

Dhiman, T. R., Anand, G. R., Satter, L. D., & Pariza, M. W. (1999). Conjugated Linoleic Acid Content of Milk from Cows Fed Different Diets1. Journal of Dairy Science, 82(10), 2146–2156.

Ezequiel, J. M. B., Sancanari, J. B. D., Neto, O. R. M., Da Silva, Z. F., Almeida, M. T. C., et al. (2015). Effects of high concentrations of dietary crude glycerin on dairy cow productivity and milk quality. Journal of Dairy Science, 98(11), 8009–8017.

Facuri, L., Silva, R. R., da Silva, F. F., de Carvalho, G. G. P., Sampaio, C. B., et al. (2014). Ingestive behavior of heifers supplemented with glycerin in substitution of corn on Brachiaria brizantha pasture. Asian-Australasian Journal of Animal Sciences, 27(11), 1584.

Fisher, L. J., Erfle, J. D., & Sauer, F. D. (1971). Preliminary evaluation of the addition of glucogenic materials to the rations of lactating cows. Canadian Journal of Animal Science, 51(3), 721–727.

Fonseca, C., Balocchi, O., Keim, J. P., & Rodríguez, C. (2016). Effect of defoliation frequency on yield and nutritional composition of Pennisetum clandestinum Hochst. ex Chiov. Agro Sur, 44(3), 67–76.

Gaillard, C., Sørensen, M. T., Vestergaard, M., Weisbjerg, M. R., Larsen, M. K., et al. (2018). Effect of substituting barley with glycerol as energy feed on feed intake, milk production and milk quality in dairy cows in mid or late lactation. Livestock Science, 209, 25–31.

Goering, H. K., & Van Soest, P. J. (1970). Forage Fiber Analysis. USDA Agricultural Research Service. Handbook number 379. US Department of Agriculture. Superintendent of Documents, US Government Printing Office, Washington, DC.

Holden, L. A.; Muller, L. D., & Fales, S. L. 1994. Estimation of intake in high producing Holstein cows grazing grass pasture. Journal of Dairy Science, 77, 2332-2340.

Kass, M., Ariko, T., Kaart, T., Rihma, E., Ots, M., et al. (2012). Effect of replacement of barley meal with crude glycerol on lactation performance of primiparous dairy cows fed a grass silage-based diet. Livestock Science, 150(1–3), 240–247.

Kholif, A. E. (2019). Glycerol use in dairy diets: A systemic review. Animal Nutrition, 5(3), 209-216.

Kupczyński, R., Szumny, A., Wujcikowska, K., & Pachura, N. (2020). Metabolism, ketosis treatment and milk production after using glycerol in dairy cows: A review. Animals, 10(8), 1–17.

Mojica-Rodríguez, E., Castro-Rincón, E., Carulla-Fornaguera, J. E., & Lascano-Aguilar, C. E. (2019). Intensidad de pastoreo sobre perfil lipídico en leche bovina en el trópico seco colombiano. Agronomía Mesoamericana, 783-802.

NRC. (2001). The nutrient requirements of dairy cattle (National Academy Press (ed.); 7th ed. edited by National Academy Press. Washington, DC, USA.

Ogborn, K. (2006). Effects of method of delivery of glycerol on performance and metabolism of dairy cows during the transition period (Thesis of master). Cornell University.

Raffrenato, E., Ross, D. A., & Van Amburgh, M. E. (2018). Development of an in vitro method to determine rumen undigested aNDFom for use in feed evaluation. Journal of Dairy Science, 101(11), 9888–9900.

Reynolds, C. K., Aikman, P. C., Lupoli, B., Humphries, D. J., & Beever, D. E. (2003). Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. Journal of Dairy Science, 86(4), 1201–1217.

Santana Júnior, H. A. de, Figueiredo, M. P., Cardoso, E. O., Mendes, F. B. L., Abreu Filho, G., et al. (2013). Crude glycerin in supplement to primiparous lactating cows grazing on tropical pasture: nutritional and productive characteristics. Revista Brasileira de Zootecnia, 42(2), 117–124.

Thoh, D., Pakdeechanuan, P., & Chanjula, P. (2017). Effect of supplementary glycerin on milk composition and heat stability in dairy goats. Asian-Australasian Journal of Animal Sciences, 30(12), 1711.

Torres, R. N. S., Bertoco, J. P. A., De Arruda, M. C. G., Rodrigues, J. L., Coelho, L. M., et al. (2021). Meta-analysis of the effect of glycerin inclusion in dairy cattle diet on milk fatty acid profile. Translational Animal Science, 5(1), 1–14.

Tyrrell, H. F., & Reid, J. T. (1965). Prediction of the energy value of cow’s milk1, 2. Journal of Dairy Science, 48(9), 1215–1223.

Udén, P., Colucci, P. E., & Van Soest, P. J. (1980). Investigation of chromium, cerium and cobalt as markers in digesta. Rate of passage studies. Journal of the Science of Food and Agriculture, 31(7), 625-632.

Valencia, D. M., Giraldo, L. A., & Marín, A. (2020). In vitro fermentation of Pennisetum clandestinum Hochst. Ex Chiov increased methane production with ruminal fluid adapted to crude glycerol. Tropical Animal Health and Production, 52(2), 565-571.

van Cleef, E. H. C. B., Almeida, M. T. C., Perez, H. L., Paschoaloto, J. R., Filho, E. S. C., & Ezequiel, J. M. B. (2018). Effects of partial or total replacement of corn cracked grain with high concentrations of crude glycerin on rumen metabolism of crossbred sheep. Small Ruminant Research, 159, 45-51.

Van Hoeij, R. J., Dijkstra, J., Bruckmaier, R. M., Gross, J. J., Lam, T. J., et al. (2017). Consequences of dietary energy source and energy level on energy balance, lactogenic hormones, and lactation curve characteristics of cows after a short or omitted dry period. Journal of Dairy Science, 100(10), 8544-8564.

Velásquez, A. V., da Silva, G. G., Sousa, D. O., Oliveira, C. A., Martins, C. M. M. R., et al. (2018). Evaluating internal and external markers versus fecal sampling procedure interactions when estimating intake in dairy cows consuming a corn silage-based diet. Journal of Dairy Science, 101(7), 5890-5901.

Vito, E. S., Granja-Salcedo, Y. T., Lage, J. F., Oliveira, A. S., Gionbelli, M. P., et al. (2018). Crude glycerin as an alternative to corn as a supplement for beef cattle grazing in pasture during the dry season. Semina:Ciencias Agrarias, 39(5), 2215-2232.

Wang, C., Liu, Q., Huo, W. J., Yang, W. Z., Dong, K. H., et al. (2009). Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livestock Science, 121(1), 15-20.

Wilbert, C. A., ÊR Prates, J. O. J., & Barcellos, J. S. (2013). Crude glycerin as an alternative energy feedstuff for dairy cows. Animal Feed Science and Technology, 183(3-4), 116-123.

Downloads

Published

2021-10-08

How to Cite

Valencia E, D. M., Giraldo, L. A., Marin, A., Granja-Salcedo, Y. T., & Berchielli, T. T. (2021). Effects of different amounts of crude glycerol supplementation on dry matter intake, milk yield, and milk quality of lactating dairy cows grazing on a Kikuyu grass pasture. Scientia Agropecuaria, 12(4), 491-497. https://doi.org/10.17268/sci.agropecu.2021.053

Issue

Section

Original Articles