New cadmium bioremediation agents: Trichoderma species native to the rhizosphere of cacao trees

Authors

  • José Cayotopa-Torres Laboratorio de Fitopatología, Instituto de Investigaciones de la Amazonía Peruana. Jr. Belén Torres de Tello N° 135, Morales, San Martín.
  • Luis Arévalo-López Laboratorio de Fitopatología, Instituto de Investigaciones de la Amazonía Peruana. Jr. Belén Torres de Tello N° 135, Morales, San Martín.
  • Roger Pichis-García Laboratorio de Fitopatología, Instituto de Investigaciones de la Amazonía Peruana. Jr. Belén Torres de Tello N° 135, Morales, San Martín
  • Delmar Olivera-Cayotopa Laboratorio de Fitopatología, Instituto de Investigaciones de la Amazonía Peruana. Jr. Belén Torres de Tello N° 135, Morales, San Martín
  • Marilyn Rimachi-Valle Laboratorio de Fitopatología, Instituto de Investigaciones de la Amazonía Peruana. Jr. Belén Torres de Tello N° 135, Morales, San Martín
  • Kadir Márquez-Dávila Grupo de investigación en Bioprotección Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional Hermilio Valdizán, Huánuco

DOI:

https://doi.org/10.17268/sci.agropecu.2021.017

Keywords:

Theobroma cacao, native strains, heavy metal, soil fungi

Abstract

The cadmium absorption by cacao plant and increased in beans accumulation, represents a problem for the exports of cacao beans and chocolate industry. In this study, native strains of Trichoderma spp. were evaluated for their capacity of tolerate and removal to Cd, collected from rhizospheric soil of cacao trees. In order to evaluate such capacities under in vitro conditions, 10 native strains of Trichoderma spp. were inoculated in potato dextrose agar (PDA) culture medium contaminated with three concentrations of Cd (25 ppm, 100 ppm and 250 ppm) and in potato dextrose (PD) culture medium contaminated with 5 ppm Cd. With data of growth rhythm (RC) of the fungus colony in Cd presence and percentage of Cd removal (RCd), the analysis of variance was performed, and the means were compared with Scott-knott test (p = 0.05). The results showed that, Trichoderma spp. were sensitive to Cd presence and capable of Cd removing. Among the strains with high significant removal Cd capacity (p < 0.05) were T. brevicompactum M43D (83.1%), T. harzianum M1P (67.0%) and T. spirale M55SM (65.8%). While the most tolerant strains were T. harzianum M1P and T. koningiopsis M3B, in comparison to the control treatment without Cd. Therefore, T. brevicompactum M43D and T. spirale M55SM unite to the list of Trichoderma species as potential new Cd bioremediation agents that can be explored.

References

Akhtar, M., Sastry, K., & Mohan, P. (1996). Mechanism of metal ion biosorption by fungal biomass. Biometals, 9, 21–28.

Arévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., Zhenli, L., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Perú. Science of The Total Environment, 605–606, 792-800.

Assa, A., Noor, A., Yunus, M.R., Misnawi, & Djide, M. N. (2018). Heavy metal concentrations in cocoa beans (Theobroma cacao L.) originating from East Luwu, South Sulawesi, Indonesia. Journal of Physics: Conference Series, 979, 012011.

Baiyee, B., Pornsuriya, C., Ito, S., Sunpapao. (2019). Trichoderma spirale T76-1 displays biocontrol activity against leaf spot on lettuce (Lactuca sativa L.) caused by Corynespora cassiicola or Curvularia aeria. Biological Control, 129, 195-200.

Dixit, P., Mukherjee, P. K., Ramachandran, V., & Eapen, S. (2011). Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. Plos one, 6(1), 16360.

Druzhinina, I. S., Kopchinskiy, A. G., Komon, M., Bissett, J., Szakacs, G., & Kubicek, C. P. (2005). An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genetics and Biology, 42(10), 813–828.

Dugal, S., & Gangawane, M. (2012). Metal tolerance and potential of Penicillium species for use in mycoremediation. J Chem Pharm Res, 4(5), 2362–2366.

Fomina, M., Ritz, K., & Gadd, G. M. (2003). Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycological Research, 107(7), 861-871.

Frank, V., & Támová, G. (1993). Mutagenic effect of cadmium on Trichoderma viride. Acta Microbiologica Hungarica, 40(1), 65-69.

French, E. R., Hebert, T. T. (1980). Métodos de investigación fitopatológica. Editorial IICA, Costa Rica. 289 pp.

Güldaş, M. (2008). Comparison of digestion methods and trace elements determination in chocolate with pistachio using absorption spectrometry. J. Food Nutr. Res., 47(2): 92–99.

Hoseinzadeh, S., Shahabivand, S., & Aliloo, A. A. (2017). Toxic metals accumulation in Trichoderma asperellum and T. harzianum Microbiology, 86, 728-736.

Intriago, F. F., Talledo, S. M., Cuenca, N. G., Macías, B. J., Álvarez, A. J., & Menjívar, F. J. (2019). Evaluación del contenido de metales pesados en almendras de cacao (Theobroma cacao L.) durante el proceso de beneficiado. Pro Sciences: Revista de Producción, Ciencias e Investigación, 3(26), 17-23.

Kredics, L., Dóczi, I., Antal, Z., & Manczinger. (2001a). Effect of Heavy Metals on Growth and Extracellular Enzyme Activities of Mycoparasitic Trichoderma Strains. Bull. Environ. Contam, toxicol., 66, 249-254.

Kredics, L., Antal, Z., Manczinger, L., & Nagy, E. (2001b). Breeding of mycoparasitic Trichoderma strains for heavy metal resistance. Letters in Applied Microbiology, 33, 112-116.

Lara, J., Tejada, C., Villabona, A., Arrieta, A., & Granados, C. C. (2016). Adsorción de plomo y cadmio en sistema continuo de lecho fijo sobre residuos de cacao. Revista ION, 29(2), 113-124.

Llatance, W. O., Gonza, S. C. J., Guzmán, C. W., & Pariente M. E. (2018). Bioacumulación de cadmio en el cacao (Theobroma cacao) en la Comunidad Nativa de Pakun, Perú. Revista Forestal del Perú, 33(1), 63-75.

Márquez-Dávila, K., Arévalo-López, L., Gonzáles, R., Vega, L., & Meza, M. (2020). Trichoderma and Clonostachys as biocontrol agents against Meloidogyne incognita in sacha inchi. Pesquisa Agropecuária Tropical, 50, e60890.

Meter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmio en el cacao de América Latina y el Caribe - Análisis de la investigación y soluciones potenciales para la mitigación. Bioversity International. Roma, 74 pp.

Mohsenzadeh, F., & Shahrokhi, F. (2014). Biological removing of Cadmium from contaminated media by fungal biomass of Trichoderma species. J Environ Health Sci Engineer, 12, 102.

Nongmaithem, N., Roy, A., & Bhattacharya, P. M. (2017). Potential of Trichoderma spp. on Growth Promotion and Mitigating Cadmium Uptake in Rice Plant under the Metal Stress Ecosystem. Int. J. Curr. Microbiol. App. Sci., 6(6), 992-1010.

Nongmaithem, N., Roy, A., & Bhattacharya, P. M. (2016). Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium. Brazilian Journal of Microbiology, 47(2), 305-313.

Oshiquiri, L. H., dos Santos, K. R. A., Ferreira Junior, S. A., Steindorff, A. S., Barbosa Filho, J. R., Mota, T. M., Ulhoa, C. J., & Georg, R.C. (2020). Trichoderma harzianum transcriptome in response to cadmium exposure. Fungal Genetics and Biology, 134, 103281.

Qiu-Yun, J., Feng, Z., Shi-Hui, L., Hai-Di, Z., Dan-Jing, Y., Zhi-Hong, Y., Shao-Shan, L., & Yuan-Xiao, J. (2016). Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?. Scientific Reports, 6, 21805.

R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Sheskin, D. (2011). Handbook of parametric and nonparametric statistical procedures. Fifth Edition. Editorial CRC press: Chapman & Hall. New York, USA. 1928 pp.

Simbaqueba, J., Cotes, A.M., & Barrero, L. E. (2011). Linkage mapping of candidate genes for induce resistance and growth promotion by Trichoderma koningiopsis (Th003) in tomato Solanum lycopersicum. Acta Biológica Colombiana, 16(2), 47-62.

Svecova, L., Svecova, M., Kubal, M., & Guibal, E. (2006). Cadmium, Lead and Mercury biosorption on waste fungal biomass isolated from fermentation industry. Separation and Purification Technology, 52(1), 142–153.

Tandon, A., Fatima, T., Anshu, Shukla, D., Tripathi, P., Srivastava, S., & Singh, P.C. (2020). Phosphate solubilization by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions. Science, 32(1), 791–798.

Yaghoubian, Y., Siadat, S. A., Moradi Telavat, M. R., Pirdashti, H., & Yaghoubian, I. (2019). Bio-removal of cadmium from aqueous solutions by filamentous fungi: Trichoderma spp. and Piriformospora indica. Environ Sci Pollut Res, 26, 7863–7872.

Vankar, P. S., & Bajpai, D. (2008). Phyto-remediation of Chrome-VI of tannery effluent by Trichoderma species. Desalination, 222(1-3), 255–262.

Xiezhi, Y., Jieming, C., & Ming, H. M. (2005). Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biol Biochem, 37(2), 195–201.

Zhang, D., Yin, C., Abbas, N., Mao, Z., & Zhang, Y. (2020). Multiple heavy metal tolerance and removal by an earthworm gut fungus Trichoderma brevicompactum QYCD-6. Scientific Reports, 10, 6940.

Published

2021-04-28

How to Cite

Cayotopa-Torres, J. ., Arévalo-López, L. ., Pichis-García, R. ., Olivera-Cayotopa, D. ., Rimachi-Valle, M. ., & Márquez-Dávila, K. . (2021). New cadmium bioremediation agents: Trichoderma species native to the rhizosphere of cacao trees. Scientia Agropecuaria, 12(2), 155-160. https://doi.org/10.17268/sci.agropecu.2021.017

Issue

Section

Original Articles