Biomass production of Tetraselmis suecica using seawater with sanguaza

Authors

  • Juan Silva B. Universidad Nacional de Trujillo, Trujillo
  • Víctor Vásquez V. Universidad Nacional de Trujillo, Trujillo
  • Fernando Merino M. Universidad Nacional del Santa, Ancash

DOI:

https://doi.org/10.17268/sci.agropecu.2011.01.02

Keywords:

Growth kinetics, Tetraselmis suecica, sanguaza, response surface, Gompertz model.

Abstract

The growth of Tetraselmis suecica was evaluated. The experiment was realized using the Response Surface Methodology (RSM) with Central Composite Rotational Design (CCRD) with two factors, pH and sanguaza/seawater concentration in the range of 7 - 9 and 2 - 5 % (v/v), respectively. The culture media were stirred by bubbling air constantly (0.07 L/s) and continuously illuminated with 40 W of fluorescent light in glass containers of 1.5 L capacity at a temperature of 22.5 ± 2.1 °C. Using the Gompertz mathematical model was determined that from an 8.0 of pH and a ratio of 3.5% of sanguaza/seawater, the Tetraselmis suecica achieves maximum growth. An 8.71 of pH and a ratio of 4.56% of sanguaza/seawater allow the Tetraselmis suecica maximum growth (logN/N0) of 0.659, with a 12.3% of prediction error by applying a mathematical model of 2nd order. According to the study, the values obtained in sanguaza/seawater as a culture medium outperformed the traditionally used culture medium (Guillard F/2 with seawater). The results demonstrate the potential use of the sanguaza/seawater medium in scalable studies on pilot scale production of Tetraselmis suecica, with a view to the production of biodiesel.

References

Álvarez, M.; Zarco, J. 1989. Lipids in Microalgae. A review I. Biochemistry. Grasas y Aceites 40(2): 118-145.

Álvarez, M. 1989. Lipids in Microalgae. A review II. Environment. Grasas y Aceites 40(3): 213-223.

Bermejo, R.; Álvarez, P.; Acien, F.; Molina, G. 2002. Recovery of pure N-phycoerythrin from the microalga Porphyridium cruentum. Journal of Biotechnology 93:73-85.

Bold, H.; Wynne, M. 1985. Introduction to the Algae. New Jersey: Prentice Hall. USA.

Coll-Morales, J. 1983. Acuicultura Marina Animal. Mundi-Prensa, Madrid. España.

Díaz, A.; Ramírez, A.; Godínez, D.; Gallo, C. 2006. Efecto del tamaño de las microalgas sobre la tasa de ingestión en larvas de Artemia franciscana (Kellog, 1906). Zootecnia Tropical 24(2): 193-203.

González, D.; Marín, M. 2005. Obtención de ensilados biológicos a partir de los desechos del procesamiento de sardinas. Revista Científica FCV-LUZ 15(6): 560-567.

Guillard, R. 1973. Handbook of physiological methods. J. R. Stein Cambridge University press. London. England.

Guschina, I.; Harwood, J. 2006. Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45:160-186.

Helm, M.; Laing, I. 1981. Cost effective culture of marine unicellular algae. In F. Vogt (Edit), Energy Conservation and Renewable Energies in the Bio-industries. Pergamon Press, Oxford and New York: 247-259.

Herrero, C.; Cid, A.; Fabregas, J.; Abalde, J. 1994. Yields in biomass and chemical constituents of four commercially important marine microalgae with different culture media. Aquacultural Engineering 10: 99-110.

Hirata, K.; Tsujimoto, Y.; Namba, T.; Ohta, T.; Hirayanagi, N.: Miyasaka, H.; Zenk, M.H.; Miyamoto, K. 2001. Strong induction of phytochelatin synthesis by zinc in marine green algae, Dunaliella tertiolecta. Journal of Bioscience and Bioengineering 92: 24-29.

Knothe, G.; Dunn, R.; Bagby, M. 1997. Biodiesel: the use of vegetable oilsand their derivatives as alternative diesel fuels. ACS Symp Ser. 666: 172-208.

Laing, I.; Helm, M. 1981. Factors affecting the semi-continuous production of Tetraselmis suecica (Kylin) Butch. in 200-l vessels. Aquaculture 22: 137-148.

Lee, Y.K. 1997. Commercial production of microalgae en the Asia-Pacific rim. Journal of Applied Phycology 9: 403-411.

Millán-Núñez, R.; Valenzuela-Espinoza, E.; Trees, C.; Santamaría del Ángel, E.; Núñez, F. 2010. Efecto de la intensidad de luz en la razón de pigmentos de Tetraselmis suecica. Revista Acuacultura. Disponible en: http://promepsol.sep.gob.mx/archivospdfs/produccion/Producto773306.PDF

Mora, R.; Moronta, R.; Ortega, J.; Morales, E. 2005. Crecimiento y producción de pigmentos de la microalga nativa Chlorella sp. aislada de la Represa de Tulé, Municipio Mara, Estado Zulia, Venezuela. Ciencia Completa: 1-9.

Nakashima, S.; André, C.; Franco, B. 2000. Revisão: Aspectos Básicos da Microbiologia Preditiva. Brazilian Journal of Food Technology 3:41-51.

Rodríguez, L; Juscamaita, J.; Vargas, J. 2007. Efecto del medio EM-Bokashi en el cultivo de la microalga marina Tetraselmis suecica K. Ecología Aplicada 6: 111-116.

Rodríguez, M.; Iemma, A. 2005. Planeamiento de experimentos y optimización de procesos. Edit. Casa do Pao. Brasil.

Sánchez, H.; Juscamaita, J.; Vargas, J.; Oliveros, R. 2008. Producción de la microalga Nannochloropsis oculata (Droop) Hibberd en medios enriquecidos con ensilado biológico de pescado. Ecología Aplicada 7: 149-158.

Serdar, S.; Lök, A.; Acarli, S.; Köse, A. 2007. The effect of two different culture media and five different salinities on growth of Tetraselmis suecica. Rapp. Comm. int. Mer Médit. 38: 394.

Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P. 1998. A Look Back at the U.S. Department of Energy’s Aquatic Species Program – Biodiesel from Algae. Disponible en: http://www.nrel.gov/docs/legosti/fy98/ 24190.pdf


* Autor para correspondencia.

E-mail: vjvv@hotmail.com (V. Vásquez).


Recibido 25 febrero 2011.

Aceptado 28 marzo 2011.

Published

2013-04-25

How to Cite

Silva B., J., Vásquez V., V., & Merino M., F. (2013). Biomass production of Tetraselmis suecica using seawater with sanguaza. Scientia Agropecuaria, 2(1), 13-23. https://doi.org/10.17268/sci.agropecu.2011.01.02

Issue

Section

Original Articles