Effectiveness of nine control methods of Oregmopyga peruviana (Granara de Willink & Diaz) (Hemiptera: Coccoidea: Eriococcidae) in Vitis vinifera L. ‘Negra Criolla’ and ‘Quebranta’

Authors

  • Hans Dadther-Huaman Facultad de Agronomía, Universidad Nacional de San Agustín, Arequipa. http://orcid.org/0000-0001-7527-5410
  • Americo Machaca-Paccara Facultad de Agronomía, Universidad Nacional de San Agustín, Arequipa.
  • René Quispe-Castro Facultad de Agronomía, Universidad Nacional de San Agustín, Arequipa. Peru.

DOI:

https://doi.org/10.17268/sci.agropecu.2020.01.11

Keywords:

chlorpyrifos, dinotefuran, vinasse, spirotetramat, Pisco, integrated pest management.

Abstract

Oregmopyga peruviana, pest of the vine, causes damage that reduce the yield and strong infestations provoke the death of the plant. It is present along the Peruvian coast, being a very important pest. The objective of the study is to determine the individual efficacy of nine treatments (buprofezin 25 g·hL-1, chlorpyrifos 96 g·hL-1, pure vinasse, spirotetramat 474.3 g·hL-1, imidacloprid SC 1435 g·hL-1, imidacloprid WG 17.5 g·hL-1, M. anisopliae and B. bassiana 333.3 x 1012 CFU·hL-1, thiamethoxam 900 g·hL-1 and dinotefuran 680 g·hL-1) in different phenological periods. Each treatment was compared with its control using the Student's t-test for independent variables (p ≤ 0.05). In addition, the control percentage was determined using the Henderson and Tilton formula, obtaining for buprofezin 87.4%, chlorpyrifos 84.2%, vinasse 70.1%, spirotetramat 97.2%, imidacloprid WG 95.5%, imidacloprid SC 87.6%, dinotefuran 99.6% and thiamethoxam 91.6%. M. anisopliae and B. bassiana got no control. The results show that eight of the nine treatments had a controlling percentage higher than 70% having significantly lower populations. Furthermore, vinasse is an organic and low cost alternative for the control of O. peruviana.

References

Baggiolini, M. 1952. Les stades repères dans le développement annuel de la vigne et leur utilisation pratique. Revue romande d’Agriculture, de Viticulture et d’Arboriculture 8: 4-6.

Bisset, J.A.; Rodríguez, M.M.; Moya, M.; Ricardo Leyva, Y.; Montada Dorta, D.; Gato De Armas, R.; Pérez Insueta, O. 2011. Efectividad de formulaciones de insecticidas para el control de adultos de Aedes aegypti en La Habana, Cuba. Revista Cubana de Medicina Tropical 63(2): 166-170.

Callejas, R.; Silva, A.; Peppi, C.; Seguel, O. 2015. Factibilidad agronómica del uso de vinaza, subproducto de la fabricación del Pisco, como biofertilizante en viñedos. Revista Colombiana De Ciencias Hortícolas 8(2): 230-241.

Coulon, M.; Schurr, F.; Martel, A. C.; Cougoule, N.; Bégaud, A.; Mangoni, P.; Dalmon, A.; Alaux, C.; Le Conte, Y.; Thiéry, R.; Ribière-Chabert, M.; Dubois, E. 2018. Metabolisation of thiamethoxam (a neonicotinoid pesticide) and interaction with the Chronic bee paralysis virus in honeybees. Pesticide biochemistry and physiology 144: 10-18.

Dadther-Huaman, H.; Zúñiga-Diaz, M.; Quispe-Castro, R. 2019. Aproximación a un manejo integrado de Oregmopyga peruviana (Granara de Willink & Diaz)(Hemiptera: Coccoidea: Eriococcidae) en Vitis vinifera L. ‘Negra Criolla’. Manglar 16(2): 163-171.

Elbert, A.; Becker, B.; Harwtig, J.; Erdelen, C. 1991. Imidacloprid – a new systemic insecticide. Pflanzenschutz-Nachrichten Bayer (German edition) 44: 113–136.

Feng, M.G.; Poprawski, T.J.; Khachatourians, G.G. 1994. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: current status. Biocontrol science and technology 4(1): 3-34.

García, A.; Rojas, C. 2006. Posibilidades de uso de la vinaza en la agricultura de acuerdo con su modo de acción en los suelos. Nota Técnica Tecnicaña 10(17): 3-13.

García, M.; Denno, B.D.; Miller, D.R.; Miller, G.L.; Ben-Dov, Y; Hardy, N.B. 2016. ScaleNet: A literature-based model of scale insect biology and systematics. Database 1-5.

Granara de Willink, M.C.; Diaz, W. 2007. Una nueva especie de Oregmopyga (Coccoidea, Eriococcidae) de Perú, descripción de estadios inmaduros. Revista Peruana de Biología 14(1): 5-10.

Henderson, C.F.; Tilton, E.W. 1955. Tests with Acaricides against the Brown Wheat Mite. Journal of Economic Entomology 48(2): 157-161.

Hodgson, C.J.; Miller, D.R. 2010. A review of the eriococcid genera (Hemiptera: Sternorrhyncha: Coccoidea) of South America. Zootaxa 2459(1): 1-101.

Kodaka, K.; Kinoshita, K.; Wakita, T.; Yamada, E.; Kawahara, N.; Yasui, N. 1998. MTI-446: a novel systemic insect control compound. Proc. Brighton Crop Prot. Conf. Pests Dis. 1: 21–26.

López-Barrera, F. 2004. Estructura y función en bordes de bosques. Revista Ecosistemas 13(1): 67-77.

Maienfisch, P.; Angst, M.; Brandl, F.; Fischer, W.; Hofer, D.; Kayser, H.; Kobel, W.; Rindlisbacher, A.; Senn, R.; Steinemann, A.; Widmer, H. 2001. Chemistry and biology of thiamethoxam: a second generation neonicotinoid. Pest management science 57(10): 906-913.

Miller, D.R.; Stocks, I.C. 2017. A New Species of Oregmopyga Hoy (Hemiptera: Coccidomorpha: Eriococcidae) from the Southwestern United States and Mexico, with Keys to Species. Proceedings of the Entomological Society of Washington 119(sp1): 807-822.

Mohapatra, S.; Deepa, M.; Lekha, S.; Nethravathi, B.; Radhika, B.; Gourishanker, S. 2012. Residue dynamics of spirotetramat and imidacloprid in/on mango and soil. Bulletin of environmental contamination and toxicology 89(4): 862-867.

Nauen, R.; Ebbinghaus-Kintscher, U.; Salgado, V. L.; Kaussmann, M. 2003. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pesticide Biochemistry and Physiology 76(2): 55-69.

Sazo, L. 1995. Control de chanchitos blancos en frutales de hoja caduca. Sanidad vegetal en frutales y vides, Universidad de Chile, Facultad de Ciencias Agrarias y Forestales. Publicaciones Misceláneas Agrícolas 41: 60-63.

Sazo, L.; Araya, J.; De la cerda, J. 2008. Effect of a siliconate coadjuvant and insecticides in the control of mealybug of grapevines, Pseudococcus viburni (Hemiptera: Pseudococcidae). Cien. Inv. Agr. 35(2): 215-222.

Singh, M.; Gupta, D.; Gupta, P.R. 2010. Evaluation of imidacloprid and some biopesticides against mango hoppers, Idioscopus clypealis (Lethierry) and Amritodus atkinsoni (Lethierry). Indian Journal of Entomology 72(3): 262-265.

Tomizawa, M.; Yamamoto, I. 1993. Structure-activity relationships of nicotinoids and imidacloprid analogs. Journal of Pesticide Science 18(1): 91-98.

Tomlin, C. 2000. The pesticide manual, 12th ed. British Crop Protection Council, London, United Kingdom.

Uchida, M.; Izawa, Y.; Sugimoto, T. 1987. Inhibition of prostaglandin biosynthesis and oviposition by an insect growth regulator, buprofezin, in Nilaparvata lugens Stål. Pesticide biochemistry and physiology 27(1): 71-75.

Vingerhoets, M. 2015. Los secretos del Pisco. Editorial Fondo Universidad de San Martín de Porres. Lima, Perú, 172 pp.

Wille, J.E. 1952. Entomología Agrícola del Perú. 2da. Edición. Junta de Sanidad Vegetal, Dirección General de Agricultura, Ministerio de Agricultura. Lima, Perú. 309 pp.

Yasui, M.; Fukada, M.; Maekawa, S. 1985. Effects of buprofezin on different developmental stages of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). Applied Entomology and Zoology 20(3): 340-347.

Published

2020-04-01

How to Cite

Dadther-Huaman, H., Machaca-Paccara, A., & Quispe-Castro, R. (2020). Effectiveness of nine control methods of Oregmopyga peruviana (Granara de Willink & Diaz) (Hemiptera: Coccoidea: Eriococcidae) in Vitis vinifera L. ‘Negra Criolla’ and ‘Quebranta’. Scientia Agropecuaria, 11(1), 95-103. https://doi.org/10.17268/sci.agropecu.2020.01.11

Issue

Section

Original Articles