Health risks due to the presence of heavy metals in agricultural products cultivated in areas abandoned by gold mining in the Peruvian Amazon

Authors

  • Margarita Soto-Benavente Departamento Académico de Ciencias Básicas, Universidad Nacional Amazónica de Madre de Dios. Puerto Maldonado. http://orcid.org/0000-0003-2850-7340
  • Liset Rodriguez-Achata Departamento Académico de Ciencias Básicas, Universidad Nacional Amazónica de Madre de Dios. Puerto Maldonado. http://orcid.org/0000-0002-2904-8097
  • Martha Olivera Departamento Académico de Ciencias Básicas, Universidad Nacional Amazónica de Madre de Dios. Puerto Maldonado. http://orcid.org/0000-0002-7789-6445
  • Victor Arostegui Departamento Académico de Ingeniería Forestal y Medio Ambiente, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado.
  • Cesar Colina Departamento Académico de Ingeniería Forestal y Medio Ambiente, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado.
  • Jorge Garate Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, secció Ecologia, Universitat de Barcelona, Barcelona. http://orcid.org/0000-0002-7494-2274

DOI:

https://doi.org/10.17268/sci.agropecu.2020.01.06

Keywords:

Bioaccumulation, artisanal mining, Manihot esculenta, Musa paradisiaca, heavy metals, gold mining.

Abstract

The present study aimed to determine the concentrations of As, Cd, Pb and Hg in soil and crops (banana and cassava) in areas abandoned by gold mining, southeast of the Peruvian Amazon. The concentration and bioaccumulation of heavy metals was analyzed, according to the plant organ (root, stem, leaf and fruit). Soil Hg concentrations (< 0.01 mg/kg) were found to be similar in contaminated and uncontaminated plantations; while the concentrations of As, Cd and Pb were higher in the contaminated ones. The concentrations of As, Pb and Cd in cassava and banana were higher in the contaminated plantations. In cassava, a high accumulation of Pb and As was found in the roots and stems (> 2.9 mg/kg). In banana fruits, the lowest concentrations of all the metals analyzed were found (< 0.01 mg/kg). The degree of bioaccumulation of As and Pb was intense for cassava in contaminated areas. The concentrations of As and Pb in cassava roots exceed the levels recommended by the FAO/ WHO. For these reasons, evaluation, monitoring and greater control in the commercialization of agricultural products cultivated in areas abandoned by gold mining are essential to avoid toxicity in humans.

References

Abdalla, M.; Hassabo, A.; Elsheikh. 2013. Assessment of some heavy metals in waste water and milk of animals grazed around sugar cane plants in Sudan. Livestock Research for Rural Development 25: abda25212.

Ahn, Y.; Yun, H.; Pandi, K.; Park, S.; Ji, M.; Choi, J. 2020. Heavy metal speciation with prediction model for heavy metal mobility and risk assessment in mine-affected soils. Environmental Science and Pollution Research 27(3): 3213-3223.

Alcantara, H.; Doronila, A.; Kolev, S. 2017. Phytoextraction potential of Manihot esculenta Crantz. (cassava) grown in mercury and gold-containing biosolids and mine tailings. Minerals Engineering 114: 57-63

Anticona, C.; San Sebastian, M. 2014. Anemia and malnutrition in indigenous children and adolescents of the Peruvian Amazon in a context of lead exposure: a cross-sectional study. Global Health Action 7: 22888.

Baker, A. 1981. Accumulators and excluders strategies in the response of plants to heavy metals. Journal Plant Nutrition 3(1-4): 643-654.

Barraza, F.; Maurice, L.; Uzu, G.; Becerra, S.; López, F.; Ochoa-Herrera, V.; Ruales, V.; Schreck, E. 2018. Distribution, contents and health risk assessment of metal(loid)s in small-scale farms in the Ecuadorian Amazon: An insight into impacts of oil activities. Science of the Total Environment 622-623: 106-120.

Brack, A.; Ipenza, C.; Alvarez, J.; Sotero, V. 2011. Minería Aurífera en Madre de Dios y Contaminación con Mercurio - Una Bomba de Tiempo. Ministerio del Ambiente. Lima, Perú. 54 pp.

Doležalová, H.; Mihočová, S.; Chovanec, P.; Pavlovský, J. 2019. Potential Ecological Risk and Human Health Risk Assessment of Heavy Metal Pollution in Industrial Affected Soils by Coal Mining and Metallurgy in Ostrava, Czech Republic. International journal of environmental research and public health 16(22): 4495.

dos Santos, V.; Varón-López, J.; Fonsêca, C.; Lopes, P.; Siqueira, J.; de Souza, F. 2016. Biological attributes of rehabilitated soils contaminated with heavy metals. Environmental Science and Pollution Research 23: 6735-6748.

FAO-OMS 2018. Codex Alimentarius Commission on contaminants in foods, Twelfth Session Report. Food and Agriculture Organization of the United Nations – World Health Organization. Utrecht, The Netherlands. 169 pp.

Fincheira-Robles, P.; Martínez-Salgado, M.; Ortega, R.; Janssens, M.; Parada-Ibañez, M. 2018. Soil quality indicators in table grape (Vitis vinifera cv. Thompson seedless) crops under integral nutrition management. Scientia Agropecuaria 9(2): 17-24.

González-Merizalde, M.; Menezes-Filho, J.; Cruz-Erazo, C.; Bermeo-Flores, S. 2016. Manganese and Mercury Levels in Water, Sediments, and Children Living Near Gold-Mining Areas of the Nangaritza River Basin, Ecuadorian Amazon. Archives of Environmental Contamination and Toxicology 71(2): 171-182.

Gjoka, F.; Felix-Henningsen, P.; Wegener, H.; Salillari, I.; Beqiraj, A. 2010. Heavy metals in soils from Tirana (Albania). Environmental Monitoring and Assessment, 172: 517-527.

Harrison, U.; Osu, J.; Ekanem, J. 2018. Heavy Metals Accumulation in Leaves and Tubers of Cassava (Manihot Esculenta Crantz) Grown in Crude Oil Contaminated Soil at Ikot Ada Udo, Nigeria. Journal of Applied Sciences and Environmental Management 22(6): 845-851.

Huayllani, M. 2017. Presencia de metales pesados en la estructura vegetal de Apeiba membranacea, Ochroma pyramidale, Ceiba pentandra, Erythrina ulei instaladas en áreas intervenidas por la minería aurífera en el sector Manuani-Inambari-Tambopata-Madre de Dios. Tesis de grado, Universidad Amazónica de Madre de Dios, Puerto Maldonado. Perú. 96 pp.

Huaranga, F.; Méndez, E.; Quilcat, V.; Huaranga, F. 2012. Pollution by heavy metals in the Moche River Basin, 1980-2010, La Libertad, Peru. Scientia Agropecuaria 3(3): 235-247.

Idodo-Umech, G.; Ogbeibu, A. 2010. Bioaccumulation of the heavy metals in cassava tubers and plantain fruits grown in soils impacted with petroleum and non-petroleum activities. Research Journal of Environmental Sciences 4(1): 33-41.

INEI-Instituto Nacional de Estadística e Informática. 2018. Disponible en https://www.inei.gob.pe

Kabata-Pendias, A.; Mukherjee, A. 2007. Trace Elements from Soil to Human. Springer. London, England. 403 pp.

Kalagbor, A.; Dighi, N.; James, R. 2015. Levels of some heavy metals in cassava and plantain from farmlands in Kaani and Kpean in Khana Local Government Area of Rivers State. Journal of Applied Sciences and Environmental Management 7: 22888.

Kim, H.; Kim, Y.; Seo, Y. 2015. An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. Journal of Cancer Prevention 20(4): 232-240.

Kříbek, B.; Majera, V.; Knésla, I.; Nyambeb, I.; Mihaljevičc, M.; Ettlerc, V.; Sracekd, O. 2014. Concentrations of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt. Journal of African Earth Sciences 99(2): 713-723.

Londoño-Franco, L.; Londoño-Muñoz, P; Muñoz-Garcia, F. 2016. Risk of heavy metals in human and animal health. Biotecnología en el Sector Agropecuario y Agroindustrial 14(2): 145-153.

Mas, A.; Azcue, J. 1993. Metales en sistemas biológicos. Promociones y Publicaciones Universitarias S.A. Barcelona, España. 324 pp.

Micó, C. 2005. Estudio de metales pesados en suelos agrícolas con cultivos hortícolas de la provincia de alicante. Tesis de doctorado, Universidad de Valencia, Valencia. España. 508 pp.

MINAM - Ministerio del Ambiente. 2017. Estándares de Calidad Ambiental (ECA) para el Suelo. Decreto Supremo N° 011-2017-MINAM.

Mlay, P.; Mgumia, Y. 2008. Levels of lead and copper in plasma of dairy cows, pastures, soil and water from selected areas of Morogoro suburbs, Tanzania. Livestock Research for Rural Development 20: 20060.

Mombo, S.; Dumat, C.; Shahid, M.; Schreck, E. 2017. A socio-scientific analysis of the environmental and health benefits as well as potential risks of cassava production and consumption. Environmental Science and Pollution Research 24(6): 5207-5221.

Müller, G. 1969. Index of geo-accumulation in sediments of the Rhine river. Geojournal 2: 108-118.

Liang, J.; Liu, J.; Yuan, X.; Zeng, G.; Lai, X.; Li, X.; Wu, H.; Yuan, Y.; Li, F. 2015. Spatial and temporal variation of heavy metal risk and source in sediments of Dongting Lake wetland, mid-south China. Journal of Environmental Science and Health 50(1): 100-108.

Osores, F.; Rojas, J.; Lara, M.; Hermógenes, C. 2012. Minería informal e ilegal y contaminación con mercurio en Madre de Dios: Un problema de salud pública. Acta Médica Peruana 29(1): 38-42.

Pérez-Sirvent, C.; Hernández-Pérez, C.; Martínez-Sánchez, M.; García-Lorenzo, M.; Bech, J. 2017. Metal uptake by wetland plants: implications for phytoremediation and restoration. Journal of Soils and Sediments 17: 1384–1393.

Barceló, J.; Poschenrieder, C. 2003. Phytoremediation: principles and perspectives. Contributions to Science 2(3): 333-344.

Prieto, J.; González, C.; Román, A.; Prieto, F. 2009. Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical Agroecosystems 10: 29-44.

Shen, Z.; Xu, D.; Li, L.; Wang, J; Shi, X. 2019. Ecological and health risks of heavy metal on farmland soils of mining areas around Tongling City, Anhui, China. Environmental Science and Pollution Research International 26(15): 15698-15709.

Tshala-Katumbay, D.; Mwanza, J.; Rohlman, D.; Maestre, G.; Oria, R. 2015. A global perspective on the influence of environmental exposures on the nervous system. Nature 527: 187-192.

USEPA (United States Environmental Protection Agency). 2001. Risk Assessment Guidance for Superfund: Volume III—Part A, Process for Conducting Probabilistic Risk Assessment. Washington, USA.

Valenzuela, O.; Quispe, J. 2017. Determinación cuantitativa de plomo y cadmio en diez tipos de yuca (Manihot esculenta) comercializadas en el mercado del distrito de San Martin de Pangoa, de la ciudad de Satipo, departamento de Junin, de enero a marzo de 2017. Tesis Grado, Universidad Wiener, Lima. Perú.

Velásquez-Ramírez, G.; Barrantes, J.; Thomas, E.; Miranda, L.; Pillaca, M.; Tello, L.; Bazan, L. 2020. Heavy metals in alluvial gold mine spoils in the peruvian amazon. Catena 189: 104454.

Vig, K.; Megharaj, M.; Sethunathan, N.; Naidu, R. 2003. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Advances in Environmental Research 8(1): 121-135.

Xiao, R.; Wang, S.; Li, R.; Wang, J.; Zhang, Z. 2017. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicology and Environmental Safety 141: 17-24.

Xiong, T.; Dumat, C.; Pierart, A.; Shahid, M.; Kang, Y.; Li, N.; Bertoni, G.; Laplanche, C. 2016. Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil-plant-atmosphere transfers in urban areas, South China. Environmental Geochemistry and Health 38(6): 1283-1301.

Zhang, Q.; Yu, R.; Fu, S.; Wu, Z.; Chen, H.Y.H.; Liu, H. 2019. Spatial heterogeneity of heavy metal contamination in soils and plants in Hefei, China. Scientific Reports 9(1): 1–8.

Published

2020-04-01

How to Cite

Soto-Benavente, M., Rodriguez-Achata, L., Olivera, M., Arostegui, V., Colina, C., & Garate, J. (2020). Health risks due to the presence of heavy metals in agricultural products cultivated in areas abandoned by gold mining in the Peruvian Amazon. Scientia Agropecuaria, 11(1), 49-59. https://doi.org/10.17268/sci.agropecu.2020.01.06

Issue

Section

Original Articles