Identification of genes related to drought tolerance in 41 varieties of quinoa (Chenopodium quinoa Willd)

Authors

  • F. Serna Instituto Nacional de Innovación Agraria.
  • J.D. Montenegro Instituto Nacional de Innovación Agraria.
  • W. Cruz Instituto Nacional de Innovación Agraria.
  • G. Koc Instituto Nacional de Innovación Agraria.

DOI:

https://doi.org/10.17268/sci.agropecu.2020.01.04

Keywords:

quinoa, RNA-Seq, transcriptome, drought, Random Cloning.

Abstract

The objective of the research was to identify the genes related to drought tolerance in quinoa. For this, 41 varieties of Chenopodium quinoa Willd were evaluated with six repetitions; in the flowering stage, three pots/material, of each variety, were randomly selected to be induced to total drought for two weeks, resuming irrigation after that period, the other three were the control. From day 27 after sowing, the chlorophyll level was measured and classified as tolerant or susceptible to drought, based on its chlorophyll content index (CCI). For the identification of genes, leaf samples of three varieties were taken (Red head, Salcedo INIA and Kankolla 1). RNA Extraction was performed using reagent® TRI reagent and for the transcriptome sequencing the Ilumina platform was used. 26 genes were identified in the three varieties of quinoa, but in the drought tolerant varieties; three of them are regulated upwards when exposed to drought and five genes (AUR62037809, AUR62000271, AUR62037807, AUR62042825 AUR62009791) have a change in their pattern of expression as a result of drought exposure.

References

Ahumada, A.; Ortega, A.; Chito, D.; Benítez, R. 2016. Saponinas de quinua (Chenopodium quinoa Willd.): Un subproducto con alto potencial biológico. Revista Colombiana de Ciencias Químico-Farmacéuticas 45(3): 438-469.

Al-Naggar, A.M.; El-Salam, R.M.; El-Sayed, A.E.; Abul-Fetouh, M.M. 2017. Effects of genotype and drought stress on some agronomic and yield traits of quinoa (Chenopodium quinoa Willd.). Bioscience Research 2017 14(4): 1080-1090.

Aly, A.; Al-Barakah, F.; El-Mahrouky, M. 2018. Salinity Stress Promote Drought Tolerance of Chenopodium Quinoa Willd. Communications in Soil Science and Plant Analysis 49(11): 1331-1343.

Apaza, V.; Cáceres, G.; Estrada, R.; Pinedo, R.2013. Catálogo de variedades comerciales de quinua en el Perú. Disponible en: http://www.fao.org/3/a-as890s.pdf

Avalos, H. 2018. El uso de la tecnología y su relación con la cadena productiva de la quinua en los agricultores de la localidad de Cabana de la región de Puno, 2016. Veritas et Scientia 7(1): 781-787.

Bazile, D.; Baudron, F. 2014. Dinámica de la expansión mundial de la quinua que crece en vista de su alta biodiversidad. In: Estado del arte de la quinua en el mundo en 2013. Bazile Didier (ed.), Bertero Hector Daniel (ed.), Nieto Carlos (ed.). Santiago du Chili: FAO-CIRAD, pp. 49-64.

Bazile, D.; Jacobsen, S.E.; Verniau, A. 2016a. The Global Expansion of Quinoa: Trends and Limits. Front Plant Sci. 7: 622.

Bazile, D.; Pulvento, C.; Verniau, A.; Al-Nusairi, M.S.; Ba, D.; Breidy, J.; Hassan, L.; Mohammed, M.I.; Mambetov, O.; Otambekova, M.; Sepahvand, N.A.; Shams, A.; Souici, D.; Miri, K.; Padulosi, S. 2016b. Worldwide evaluation of quinoa: preliminary results from post international year of quinoa FAO project in nine countries. Frontier Plants Science 7: 1-18.

Bojanic, A. 2011. La quinua: Cultivo milenario para contribuir a la seguridad alimentaria mundial. Oficina Regional de la FAO para América Latina y el Caribe (FAO/RLC).

Bolger, A.M.; Lohse, M.; Usadel, B. 2014.Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30(15): 2114-2120.

Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S., Gingeras, T.R. 2013. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29(1): 15-21.

Claeys, H.; Inze, D. 2013. The Agony of Choice: How Plants Balance Growth and Survival under Water Limiting Conditions. Plant Physiology 162(4): 1768- 1779.

FAO. 2018. El estado de la seguridad alimentaria y la nutrición en el mundo 2018. Food & Agriculture Org. Disponible en: http://www.fao.org/3/I9553ES/i9553es.pdf

Gilchrist, E.J.; Haughn, G.W.; Ying, C.C.; Otto, S.P.; Zhuang, J.; Cheung, D.; Cronk, Q.C.B. 2006. Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Molecular Ecology 15(5): 1367-1378.

Giménez, C.; Palacios, G.; Colmenares, M. 2006. Musa methylated DNA sequences associated with tolerance to Mycosphaerella fijiensis toxins. Plant Mol. Biol. Rep. 24: 33-43.

Graf, BL.; Rojo, LE.; Delatorre-Herrera, J.; Poulev, A.; Calfio, C.; Raskin, I. 2016. Phytoecdysteroids and flavonoid glycosides among Chilean and commercial sources of Chenopodium quinoa: variation and correlation to physico-chemical characteristics. J Sci Food Agric. 96(2): 633–643.

Gu, Z.; Eils, R.; Schlesner, M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32(18): 2847-2849.

INIA, 2013. Quinua Salcedo INIA. Disponible en: http://www.inia.gob.pe/wp-content/uploads/investigacion/programa/sistProductivo/variedad/quinua/Quinua-Salcedo.pdf

InterPro. 2019. Protein sequence analysis & classification https://www.ebi.ac.uk/interpro/

Iqbal, M.A. 2015. An Assessment of Quinoa (Chenopodium quinoaWilld) Potential as a Grain Crop on Marginal Lands in Pakistan. American-Eurasian J. Agric. & Environ. Sci. 15(1): 16-23.

Iqbal, H.; Yaning, C.; Waqas, M.; Turab, S. 2018. Differential response of quinoa genotypes to drought and foliage-applied H2O2 in relation to oxidative damage, osmotic adjustment and antioxidant capacity. Ecotoxicology and Environmental Safety 164: 344-354.

Issa, O.; Fghire, R.; Anaya, F.; Benlhabib, O.; Wahbi, S. 2019. Physiological and Morphological Responses of two Quinoa Cultivars (Chenopodium quinoa Willd.) to Drought Stress. Gesunde Pflanzen 71: 123-133.

Jacobsen, S-E.; Liu, F.; Jensen, CR. 2009. Does rootsourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae 122(2): 281-287.

Jarvis, D.E.; Ho, Y.S.; Lightfoot, D.J.; Schmöckel, S.M.; Li, B.; Borm, T.J.A.; Tester, M. 2017. The genome of Chenopodium quinoa. Nature 542(7641): 307-312.

Kolano, B.; McCann, J.; Orzechowska, M.; Siwinska, D.; Temsch, E.; Weiss-Schneeweiss, H. 2016. Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Molecular Phylogenetics and Evolution 100: 109-123.

Liao, Y.; Smyth, G.K.; Shi, W. 2013. The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Research 41(10): 2-17.

McCarthy, D.J.; Chen, Y.; Smyth, G.K. 2012. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research 40(10): 4288-4297.

Morales, A.; Zurita, A.; Silva, H. 2011. Quinoa as a Drought Tolerance Genes Source. Plant and Animal Genome XIX Conference, San Diego, USA. 15-19.

Mulo, P.; Sicora, C.; Aro, E.M. 2009. Cyanobacterial psbA gene family: optimization of oxygenic photosyn-thesis. Cellular and Molecular Life Sciences 66(23): 3697-3710.

Nuñez, N. 2015. La quinua (Chenopodiumquinoa Willd.) Alternativa de seguridad alimentaria para zonas desérticas. Revista Ciencia & Desarrollo 19: 19-24.

Ramírez, C.; Romero, G.; Gómez, J. 2016. Respuesta morfoagronómica y calidad en proteína de tres variedades de quinua (Chenopodium quinoa Willd.) en la sabana norte de Bogotá. Revista U.D.C.A Actualidad & Divulgación Científica 19(2): 325-332.

Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. 2010. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinfor-matics 26(1): 139-140.

Ruiz, KB.; Biondi, S.; Martínez, EA.; Orsini, F.; Antognoni, F.; Jacobsen, S.E. 2016. Quinoa – a Model Crop for Understanding Salt-tolerance Mechanisms in Halophytes. Plant Biosystems 150: 357-371.

Vidueiros, M.; Curti, R.N.; Dyner, L.M.; Binaghi, MJ., Peterson, J.; Bertero, H.D.; Pallaro, A.N. 2015. Diversity and interrelationships in nutritional traits in cultivated quinoa (Chenopodium quinoa Willd.) from Northwest Argentina. Journal of Cereal Science 62: 87-93.

Ward, S.M. 2000. Response to selection for reduced grain saponin content in quinoa (Chenopodium quinoa Willd.). Field Crops Research 68(2): 157-163.

Wingett, S.W.; Andrews, S. 2018. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research 7: 1338.

Zou, C.; Zou, C.; Chen, A.; Xiao, L.; Muller, H.; Ache, P.; Haberer, G.; Zhang, M.; Jia, W.; Deng, P.; Huang, R.; Lang, D.; Li, F.; Zhan, D.; Wu, X.; Zhang, H.; Bohm, J.; Liu, R.; Shabala, S.; Hedrich, R.; Zhu, J.; Zhang, H. 2017. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Research 27: 1327.

Zurita-Silva, A.; Fuentes, F.; Zamora, P.; Jacobsen, S.-E.; Schwember, A.R. 2014. Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Molecular Breeding 34(1): 13-30.

Published

2020-04-01

How to Cite

Serna, F., Montenegro, J., Cruz, W., & Koc, G. (2020). Identification of genes related to drought tolerance in 41 varieties of quinoa (Chenopodium quinoa Willd). Scientia Agropecuaria, 11(1), 31-38. https://doi.org/10.17268/sci.agropecu.2020.01.04

Issue

Section

Original Articles