Inhibitory action of dried leaf of Cassia alata (Linn.) Roxb against lipoxygenase activity and nitric oxide generation

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2019.02.03

Palabras clave:

Cassia alata (Linn.) Roxb., lipoxygenase, nitric oxide, inflammation, gas chromatography.

Resumen

The mechanisms of inflammation mediated by metabolites of lipoxygenase and nitric oxide play essential roles in physiological immune response. The aim of this study was to evaluate the lipoxygenase (LOX) inhibitory activity of methanolic extract of dried leaf of Cassia alata (Linn.) Roxb. as well as its effect on in vitro accumulation of nitric oxide (NO). The LOX inhibitory activity was evaluated for its ability to inhibit lipoxygenase (soyLOX) by absorbance-based assay using linoleic acid as the substrate while the influence of the extract on accumulation of NO was monitored spectrophotometrically by Griess assay method. Moreover, gas chromatographic analysis was carried out on the ether extract to identify and quantify the volatile compounds in the extract. The study showed effective soyLOX inhibitory activity correlating with the NO depletion in a concentration-dependent manner. The gas chromatographic identification of the volatile compounds in the extract showed the presence of stearic, oleic and linoleic acids. This study revealed the methanolic extract of the leaf of C. alata (Linn.) Roxb. as potent inhibitor of both soyLOX and nitric oxide generation. Thus, these results give indications regarding therapeutic interest of C. alata (Linn.) Robx. as a potential anti-inflammatory agent.

Citas

Alitonou, G.A.; Avlessi, F.; Sohounhloue, D.K.; Agnaniet, H.; Bessiere, J.M.; Menut, C. 2006. Investigations on the essential oil of Cymbopogon giganteus from Benin for its potential use as an antiinflammatory agent. International Journal Aromatheraphy 16: 37-41.

Borbulevych, O.Y.; Jankun, J.; Selman, S.; Skrzypezak-Jankun, E. 2004. Lypoxygenase interactions with natural flavonoid, quercetin, reveal a complex with protocatechuic acid in its X-Ray structure at 2.1 Å resolution. Proteins, Structure, Function and Bioinfor-matics 54:13-19.

Canals, S.; Casarejos, M.J.; de Bernardo, S.; Rodríguez-Martín, E.; Mena, M.A. 2003. Nitric Oxide Triggers the Toxicity due to Glutathione Depletion in Midbrain Cultures through 12-Lipoxygenase. Journal of Biological Chemistry 278 (24): 21542–21549.

Carrillo, C.; Cavia Mdel, M.; Alonso-Torre, S. 2012. Role of oleic acid inimmune system; mechanism of action; a review. Nutrición Hospitalaria 27(4): 987-990.

Chatterjee, S.; Chatterjee, S.; Deyand, K.K.; Dutta, S. 2013. Study of antioxidant activity and immune stimulating potency of the ethnomedicinal plant. Cassia alata (L.) Roxb. Medicinal and Aromatic Plants 2(4): 131.

Chua, L.Y.W.; Chua, B.L.; Figiel, A.; Chong, C.H.; Wojdylo, A.; Szumny, A.; Lech, K. 2019. Characterisation of the convective hot-air drying and vacuum microwave drying of Cassia alata: Antioxidant activity, essential oil volatile composition and quality studies. Molecules 24:1625.

Das, U.N. 2006. Essential fatty acids: biochemistry, physiology and pathology. Biotech-nology Journal 1:420-439.

Dennis, E.A.; Norris, P.C. 2015. Eicosanoids storm in infection and inflammation. Nature Reviews Immunology 15(8):511-523.

Duong, N.T.T.; Chinh, H.T.; Din, T.S.; Phong, T.L.H.; Phuong, P.N.; Quynh, P.Q.; Truc, N.T.T.; Quang, T.T. 2013. Contribution to the study on chemical constituents from the leaves of Cassia alata L. (Caesalpiniaceae). Science, Technology and Development 16(2): 26–31.

Garrat, D.C. 1964. The Quantitative Analysis of Drugs, Japan, Chapman and Hall. 456 pp.

Gundersen, L.L.; Malterud, K.E.; Negussie, A.H.; Rise, F.; Teklu, S.; Ostby, O.B. 2003. Indozilines as Novel Potent Inhibitors of 15-lipoxygenase. Bioorganic and Medicinal Chemistry 11: 5409–5415.

Hussain, T.; Gupta, S.; Adhami, V.M.; Mukhtar, H. 2005. Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells, International Journal of Cancer 113: 660–669.

Ivanov, I.; Heydeck, D.; Hofheinz, K.; Roffeis, J.; O’Donnell, V.B.; Kühn, H. 2010. Molecular enzymology of lipoxygenases. Archive of Biochemistry and Biophysics 503: 161-174.

Khlifi, D.; Sghaier, R.M.; Laouni, D.; Hayouni, A.; Hamd, M.; Bouajila, J. 2013. Anti-Inflammatory and Acetylcholinesterase Inhibition Activities of Globularia alypum. Journal of Medical and Bioengineering 2(4):232-237.

Larsson, A.; Bӓck, M.; Hjoberg, J.; Dahlén, S. 2005. Inhibition of Nitric-Oxide Synthase Enhances Antigen-Induced Contractions and Increases Release of Cysteinyl-Leukotrienes in Guinea Pig Lung Parenchyma: Nitric Oxide as a Protective Factor. Journal of Phar-macology and Experimental Therapeutics 315 (1):458–465.

Leelaprakash, G.; Rose, J.C.; Dass, S.M. 2012. In vitro Anti-inflammatory activity of Momordica charantia by inhibition of lipoxygenase enzyme. International Journal of Pharmacy and Pharmaceutical Sciences 4 (S1): 148-152.

Lewis, A.; Levy, A. 2011. Anti-inflammatory activities of Cassia alata leaf extract in complete Freund’s adjuvant arthritis in rats. West Indian Medical Journal 60(6): 615–621.

Li, H.; Cui, H.; Kundu, T.K.; Alzawahra, W.; Zweier, J.L. 2008. Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase. Journal of Biological Chemistry 283: 17855-17863.

Li, J.; Rao, J.; Liu, Y.; Cao, Y.; Zhang, Y.; Zhang, Q.; Zhu, D. 2013. 15-Lipoxygenase promotes chronic hypoxia-induced pulmonary artery inflammation via positive interaction with nuclear factor-κB. Arteriosclerosis, Throm-bosis, and Vascular Biology 33: 971–979

Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454: 428-435.

Oso, B.J.; Olowookere, B.D. 2018. A study on the total phenolics and antioxidant properties of different solvent extracts of dried leaves of Cassia alata (L.) Roxb. Medicinal Plants 10 (4): 348-352.

Oso, B.J.; Oyewo, E.B.; Oladiji, A.T. 2018. Phytochemical compositions, antioxidant capabilities and immunomodulatory in vitro indices of Xylopia aethiopica fruit extracts. Advance Pharmaceutical Journal 3(1): 29-37

Padmaja, S.; Huie, R.E. 1993. The reactions of nitric oxide with organic peroxyl radical. Biochemical and Biophysical Research Communications 195:539–544.

Pereira, A.C.; Paulo, M.; Araújo, A.V.; Rodrigues, G.J.; Bendhack, L.M. 2011. Nitric oxide synthesis and biological functions of nitric oxide released from ruthenium compounds. Brazilian Journal of Medical and Biological Research 44(9): 947-957.

Pham, C.; Jankun, J.; Skrzypczak-Jankun, E.; Flowers, R.A.; Funk, M.O. 1998. Structural and thermochemical characterization of lipo-xygenase-catechol complexes. Biochemistry 37:17952-17957.

Rådmark, O.; Werz, O.; Steinhilber, D.; Samuelsson, B. 2015. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochimica et Biophysica Acta 1851(4): 331–339.

Ramsay, A.; Mueller-Harvey, I. 2016. Senna alata leaves are a good source of propelargoni-dins. Natural Product Research 30(13):1548–1551

Robinson, D.S.; Wu, Z.C.; Domoney, C.; Casey, R. 1995. Lipoxygenases and the quality of foods. Food Chemistry. 54: 33–43.

Sarah, A.; Tersey, E.B.; Theodore, R.H.; David, J.M.; Jerry, L.N.; Raghavendra, G.M. 2015. Minireview: 12-Lipoxygenase and Islet β-Cell Dysfunction in Diabetes. Molecular Endocrinology 29: 791– 800.

Serhan, C. N. 2002. Endogenous chemical mediators in anti-inflammation and pro-resolution. Current Medicinal Chemistry 1: 177-192.

Shinde, U.A.; Kulkarni, K.R.; Phadke, A.S.; Nair, A.M.; Mungantiwar, A.A.; Dikshit, V.J.; Saraf, M.N. 1999. Mast cell stabilizing and lipoxygenase inhibitory activity of Cedrus deodara (Roxb.) Loud. Wood Oil. Indian Journal of Experimental Biology 37(3): 258-261.

Singh, B.; Nadkarni, J.R.; Vishwakarma, R.A.; Bharate, S.B.; Nivsarkar, M.; Anandjiwala S. 2012. The hydroalcoholic extract of Cassia alata (Linn.) leaves and its major compound rhein exhibits antiallergic activity via mast cell stabilization and lipoxygenase inhibition. Journal of Ethnopharmacology 141(1): 469-473.

Skrzypczak-Jankun, E.; Chorostowska-Wynimko, J.; Selman, S.H.; Jankun, J. 2007. Lipoxy-genases – A challenging problem in enzyme inhibition and drug development. Current Enzyme Inhibition 3: 119-132.

Wisastra, R.; Dekker, F.J. 2014. Inflammation, Cancer and Oxidative Lipoxygenase Activity Are Intimately Linked. Cancers 6:1500-1521.

Zeldin, D.C. 2002. The 5-Lipoxygenase Pathway: A New Therapeutic Target for the Treatment of Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine 165: 146-147.

Zweier, J.L.; Samouilov, A.; Kuppusamy, P. 1999. Non-enzymatic nitric oxide synthesis in biological systems. Biochimica Biophysica Acta 1411: 250-262.

Received February 11, 2019.

Accepted March 17, 2019.

Corresponding author: basjoe08@gmail.com (B.J. Oso).

Publicado

2019-07-09

Cómo citar

Oso, B., & Karigidi, K. (2019). Inhibitory action of dried leaf of Cassia alata (Linn.) Roxb against lipoxygenase activity and nitric oxide generation. Scientia Agropecuaria, 10(2), 185-190. https://doi.org/10.17268/sci.agropecu.2019.02.03

Número

Sección

Artículos originales

Artículos similares

También puede {advancedSearchLink} para este artículo.