Producción de biocarbón a partir de biomasa residual y su uso en la germinación y crecimiento en vivero de Capparis scabrida (Sapote)

Autores/as

  • Eber Herrera Universidad Nacional de Trujillo
  • Cesar Feijoo
  • Rubén Alfaro
  • José Solís
  • Mónica Gómez
  • Riitta Keiski
  • Gerardo Cruz

DOI:

https://doi.org/10.17268/sci.agropecu.2018.04.13

Palabras clave:

biocarbón, especies forestales, germinación, peligro de extinción, vivero.

Resumen

Se produjeron biocarbones a partir de tres tipos de biomasa residual: coronta de maíz, cáscara de café y exoesqueleto de langostino, para estudiar la influencia de diferentes dosis de los mismos en la germinación y crecimiento en vivero de semillas de la especie forestal Capparis scabrida (Sapote). Se realizó una exhaustiva caracterización de los biocarbones obtenidos en base a sus propiedades texturales, morfológicas, estructurales y química superficial. Semillas viables de sapote fueron colocadas en sustratos con dosis de 0, 15 y 30 %wt de cada uno de los tres tipos de biocarbones obtenidos y se colocaron en bolsas de 2 kg en condiciones de vivero. Se evaluaron los parámetros de germinación: tiempo y % de germinación; y de crecimiento de las plántulas: crecimiento de raíz y tallo, engrosamiento de tallo, incremento de masa de raíz y parte aérea y la carga microbiana en la raíz. Se determinó que el tipo de biocarbón tuvo influencia solamente en el tiempo de germinación y la dosis de biocarbón tuvo influencia en el incremento de masa de parte aérea durante el crecimiento de las plántulas. El resto de parámetros evaluados no fueron afectados ni por el tipo ni por la dosis de biocarbón.

Citas

Acharya, J.; Sahu, J.N.; Mohanty, C.R.; Meikap, B.C. 2009. Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chemical Engineering Journal 149(1-3): 249-262.

Alhamed, Y.A.; Bamufleh, H.B. 2009. Sulfur removal from model diesel fuel using granular activated carbon from dates’ stones activated by ZnCl2. Fuel 88(1): 87-94.

Buss, W.; Masek, O. 2014. Mobile organic compounds in biochar - a potential source of contamination - phytotoxic effects on cress seed (Lepidium sativum) germination. J Environmental Management 137: 111-9.

Cardoen, D.; Joshi, P.; Diels, L.; Sarma, P.M.; Pant, D. 2015. Agriculture biomass in India: Part 2. Post-harvest losses, cost and environmental impacts. Resources, Conservation and Recycling 101: 143-153.

Chu, P.K.; Li, L. 2006. Characterization of amorphous and nanocrystalline carbon films. Materials Chemistry and Physics 96(2-3): 253-277.

Dharmakeerthi, R.S.; Chandrasiri, J.A.S; Edirimanne, V.U. 2012. Effect of rubber wood biochar on nutrition and growth of nursery plants of Hevea brasiliensis established in an Ultisol. SpringerPlus 1(1): 84.

Florentine, S.K.; Weller, S.; Graz, P.F.; Westbrooke, M.; Florentine, A.; Javaid, M.; Fernando, N.; Chauhan, B.S.; Dowling; K. 2016. Influence of selected environmental factors on seed germination and seedling survival of the arid zone invasive species tobacco bush (Nicotiana glauca R. Graham). The Rangeland Journal 38(4): 417.

Gluszek, S.; Sas, L.P.; Sumorok, B.; Kozera, R. 2017. Biochar-Rhizosphere Interactions–a Review. Polish journal of Microbiology 66(2): 151-161.

Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment 206: 46-59.

Hafeez, Y.; Iqbal, S.; Jabeen, K.; Shahzad, S.; Jahan, S.; Rasul, F. 2017. Effect of biochar application on seed germination and seedling growth of Glycine max (l.) Merr. Under drought stress. Pakistan Journal of Botany 49: 7-13.

Helliwell, R. 2016. Effect of biochar on plant growth. Arboricultural Journal 37(4): 238-242.

Kammann, C.I.; Schmidt, H.P.; Messerschmidt, M.; Linsel, S.; Steffens, D.; Muller, C.; Koyro, H.W.; Conte, P.; Joseph, S. 2015. Plant growth improvement mediated by nitrate capture in co-composted biochar. Science Report 5: 11080.

Li, Y.; Shen, F.; Guo, H.; Wang, Z.; Yang, G.; Wang, L.; Zhang, Y.; Zeng, Y.; Deng, S. 2015. Phytotoxicity assessment on corn stover biochar, derived from fast pyrolysis, based on seed germination, early growth, and potential plant cell damage. Environmental Science and Pollution Research 22(12): 9534-43.

Liopa-Tsakalidi, A.; Barouchas, P.E. 2017. Effects of biochar on pepperoncini (Capsicum annuum L cv. Stavros) germination and seedling growth in two soil types. Australian Journal of Crop Science 11(03): 264-270.

McElligott, K.M. 2011. Biochar amendments to forest soils: effects on soil properties and tree growth. Tesis de Maestría, Universidad de Idaho, Estados Unidos. 103 pp.

Oliveira, L.C.; Pereira, E.; Guimaraes, I.R.; Vallone, A.; Pereira, M.; Mesquita, J.P; Sapag, K. 2009. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. Journal of Hazardous Materials 165(1-3): 87-94.

Sahu, J.N.; Acharya, J.; Meikap, B.C. 2010. Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology. Bioresourse Technology 101(6): 1974-82.

Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. 2010. A review of biochar and its use and function in soil. In Advances in agronomy 105: 47-82.

Solaiman, Z.M.; Murphy, D.V.; Abbott, L.K. 2011. Biochars influence seed germination and early growth of seedlings. Plant and Soil 353(1-2): 273-287.

Sun, F.; Lu, S. 2014. Biochars improve aggregate stability, water retention, and pore-space proper-ties of clayey soil. Journal of Plant Nutrition and Soil Science 177(1): 26-33.

Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. 2015. Physisorption of gases, with special refe-rence to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87(9-10): 1051–1069.

Tsai, W.T.; Chang, C.Y.; Lin, M.C.; Chien, S.F.; Sun, H.F.; Hsieh, M.F. 2001. Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemosphere 45(1): 51-58.

Received September 11, 2018.

Accepted December 3, 2018.

Corresponding author: gcruzc@untumbes.edu.pe (G. Cruz).

Descargas

Publicado

2018-12-29

Cómo citar

Herrera, E., Feijoo, C., Alfaro, R., Solís, J., Gómez, M., Keiski, R., & Cruz, G. (2018). Producción de biocarbón a partir de biomasa residual y su uso en la germinación y crecimiento en vivero de Capparis scabrida (Sapote). Scientia Agropecuaria, 9(4), 569-577. https://doi.org/10.17268/sci.agropecu.2018.04.13

Número

Sección

Artículos originales