Contribution of trees to carbon stocks in urban–rural ecosystems: Taxonomic, phylogenetic, and functional diversity in response to bioclimatic and geographic factors
DOI:
https://doi.org/10.17268/sci.agropecu.2026.006Palabras clave:
evolutionary relationships, species composition, sub-Andean ecosystem, tree richness, traits functionsResumen
Tree diversity plays a key role in mitigating climate change and enhancing ecosystem resilience. This study evaluated the contribution of trees across three habitats within the urban–rural gradient of Sucre, Bolivia: urban (UF), native (NF), and exotic (EF). Carbon sequestration, as well as taxonomic (TD), phylogenetic (PD), and functional (FD) diversity, were analyzed in relation to bioclimatic (temperature and precipitation) and geographic (altitude) factors. The methodology included the recording of botanical and ecological traits, along with the measurement of dendrometric classes (DBH ≥ 10 cm) in 12 temporary circular plots per habitat. Results showed higher carbon stocks in the urban forest (268.36 ± 2.76 MgC/ha), followed by the exotic (159.53 ± 0.86 MgC/ha) and the native forest (39.64 ± 0.41 MgC/ha). A total of 31 species from 19 families were identified, with marked evolutionary divergence between Pinaceae and Cupressaceae compared to Fabaceae. The urban habitat presented the highest taxonomic diversity (~51.6%), the highest phylogenetic diversity (~72%), and the greatest carbon fixation (~42%). These findings highlight the fundamental role of tree diversity in carbon sequestration, biodiversity conservation, and landscape connectivity, emphasizing the need to integrate it into sustainable urban–rural planning through adaptation and mitigation strategies that strengthen ecological resilience and ecosystem services in the urban–rural ecosystem of Sucre.
Citas
Ali, A., & Yan, E-R. (2017). Relationships between biodiversity and carbon stocks in forest ecosystems: A systematic literature review. Tropical Ecology, 58(1), 1–14.
Araujo-Murakami, A., Milliken, W., Klitgaard, B., Carrión-Cuéllar, A. M., Vargas-Lucindo, S., & Parada-Arias, R. (2016). Biomasa y Carbono en la Selva Amazónica de Várzea y Terra Firme en el Oeste de Pando. Kempffiana, 12(1), 3–19.
Barrico, L., & Castro, P. (2016). Urban biodiversity and cities’ sustainable development. In P. Castro, U. Azeiteiro, P. Bacelar-Nicolau, W. Leal Filho, & A. Azul (Eds.), Biodiversity and education for sustainable development (pp. 29-43). Springer. https://doi.org/10.1007/978-3-319-32318-3_3
Borges, E. R., Dexter, K. G., Pyles, M. V., Bueno, M. L., dos Santos, R. M., Fontes, M. A. L., & Carvalho, F. A. (2021). The interaction of land-use history and tree species diversity in driving variation in the aboveground biomass of urban versus non-urban tropical forests. Ecological Indicators, 129, 107915. https://doi.org/10.1016/j.ecolind.2021.107915
Bretz, F., Hothorn, T., & Westfall, P. (2011). Multiple Comparisons Using R (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781420010909
Cai, Z., Fang, C., He, Q., Yan, J., Gao, D., & Liu, Z. (2022). Urban-rural gradient identification and ecosystem service response in main urban area of Nanchang based on landscape clustering. Research of Environmental Sciences, 35(3), 806-817. https://doi.org/10.13198/j.issn.1001-6929.2021.12.17
Chase, M. W., Christenhusz, M. J. M., Fay, M. F., Byng, J. W., Judd, W. S., Soltis, D. E., Mabberley, D. J., Sennikov, A. N., Soltis, P. S., & Stevens, P. F. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1–20. https://doi.org/10.1111/boj.12385
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., et al. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629
Conti, G., & Díaz, S. (2013). Plant functional diversity and carbon storage-An empirical test in semi-arid forest ecosystems. Journal of Ecology, 101(1), 18–28. https://doi.org/10.1111/1365-2745.12012
de Paula, M. D., Costa, C. P. A., & Tabarelli, M. (2011). Carbon storage in a fragmented landscape of Atlantic forest: The role played by edge-affected habitats and emergent trees. Tropical Conservation Science, 4(3), 349–358. https://doi.org/10.1177/194008291100400310
Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., et al. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489
Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1), 1–10. https://doi.org/10.1016/0006-3207 (92)91201-3
Febiriyanti, A., Pradana, D. H., & Putrika, A. (2021). Estimation of carbon stocks from tree stands vegetation in Universitas Indonesia’s urban forest, Depok. Journal of Physics: Conference Series, 1725(1), 012043. https://doi.org/10.1088/1742-6596/1725/1/012043
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
Freiberg, M., Winter, M., Gentile, A., Zizka, A., Muellner-Riehl, A. N., Weigelt, A., & Wirth, C. (2020). LCVP, The Leipzig catalogue of vascular plants, a new taxonomic reference list for all known vascular plants. Scientific Data, 7(1), 416. https://doi.org/10.1038/s41597-020-00702-z
GAM-Sucre. 2021. Plan territorial de desarrollo integral para “vivir bien” del Municipio de Sucre. 2021–2025. Gobierno Autónomo Municipal de Sucre. p. 51.
Gebre, T., & Gebremedhin, B. (2019). The mutual benefits of promoting rural-urban interdependence through linked ecosystem services. Global Ecology and Conservation, 20, e00707. https://doi.org/10.1016/j.gecco.2019.e00707
Gebru, T., Solomon, N., Siyum, Z. G., Gufi, Y., Gidey, T., Newete, S. W., Manaye, A., & Birhane, E. (2025). Evaluating urban green spaces for biodiversity and carbon sequestration in Rama town, Tigray, Ethiopia. Ecological Frontiers. Advance online publication. https://doi.org/10.1016/j.ecofro.2025.06.019
Guan, Q., Chen, L., Wang, Q., Guan, C., & Li, H. (2024). Dynamical identification of urban-rural gradient and ecosystem service response: A case study of Jinghong City, China. Land, 13(3), 306. https://doi.org/10.3390/land13030306
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.
Hartig, F., & Hartig, M. F. (2017). Package ‘DHARMa.’ R Packag. 1-54. https://cran.r-project.org/web/packages/DHARMa/index.html
Jevon, F., Crown, C. A., Clark, J. A. G., Doroski, D. A., Darling, L., Sonti, N. F., Yesilonis, I. D., Dietsch, G., Bradford, M., & Pregitzer, C. C. (2024). Native trees are responsible for the high carbon density in urban natural area forests across eight United States cities. Journal of Applied Ecology, 62(1), 132–143. https://doi.org/10.1111/1365-2664.14823
Jin, Y., & Qian, H. (2022). V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Diversity, 44(4), 335–339. https://doi.org/10.1016/j.pld.2022.05.005
Knapp, S., Dinsmore, L., Fissore, C., Hobbie, S. E., Jakobsdottir, I., Kattge, J., King, J. Y., Klotz, S., McFadden, J. P., & Cavender-Bares, J. (2012). Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient. Ecology, 93(Sup8), S83–S98. https://doi.org/10.1890/11-0392.1
Kurtz, B. C., de Almeida, T. M. H., Coelho, M. A. N., Deccache, L. S. J., Tortorelli, R. M., Gonzaga, D. R., Madureira, L. K., Guedes-Oliveira, R., Barros, C. F., & de Siqueira, M. F. (2024). Quantifying the carbon stocks in urban trees: The Rio de Janeiro Botanical Garden as an important tropical carbon sink. Journal of Zoological and Botanical Gardens, 5(4), 579–589. https://doi.org/10.3390/jzbg5040039
López-López, S. F., Martínez-Trinidad, T., Benavides-Meza, H. M., García-Nieto, M., & Ángeles-Pérez, G. (2018). Reservorios de biomasa y carbono en el arbolado de la primera sección del Bosque de Chapultepec, Ciudad de México. Madera y Bosques, 24(3), e2431620. https://doi.org/10.21829/myb.2018.2431620
Lososová, Z., Čeplová, N., Chytrý, M., Tichý, L., Danihelka, J., Fajmon, K., Láníková, D., Preislerová, Z., & Řehořek, V. (2016). Is phylogenetic diversity a good proxy for functional diversity of plant communities? A case study from urban habitats. Journal of Vegetation Science, 27(5), 1036-1046. https://doi.org/10.1111/jvs.12414
Lwasa, S., Seto, K. C., Bai, X., Blanco, H., Gurney, K. R., et al. (2022). Urban systems and other settlements. In P. R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, & J. Malley (Eds.), Climate change 2022: Mitigation of climate change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, pp 861–952. https://doi.org/10.1017/9781009157926.010
Maldonado, A. A., Ferreira, W. J., & De la Barra, N. (2023). Estimation of carbon fixation in the vegetation covers of the San Pedro mountain range, Cochabamba - Bolivia. Acta Nova, 11(1), 1683-0768. https://doi.org/10.35319/acta-nova.202316 https://acortar.link/1WAFiJ
Malhi, Y., Baker, T. R., Phillips, O. L., Almeida, S., Alvarez, E., et al. (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology, 10(5), 563–591. https://doi.org/10.1111/j.1529-8817.2003.00778.x
Manrique, S., Franco, J., Núñez, V., & Seghezzo, L. (2011). Potential of native forests for the mitigation of greenhouse gases in Salta, Argentina. Biomass and Bioenergy, 35(5), 2184–2193. https://doi.org/10.1016/j.biombioe.2011.02.029
Marshall, F., Dolley, J., Bisht, R., Priya, R., Waldman, L., Amerasinghe, P. & Randhawa, P. (2018). Ecosystem services and poverty alleviation in urbanising contexts. In: Ecosystem Services and Poverty Alleviation: Trade-Offs and Governance. Taylor and Francis, Environment and Development at the Science Policy Research Unit (SPRU), University of Sussex, United Kingdom, pp 111–125.
McDonnell, M. J., & Pickett, S. T. A. (1990). Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology, 71(4), 1232–1237. https://doi.org/10.2307/1938259
McDonnell, M. J., Pickett, S. T. A., Groffman, P., Bohlen, P., Pouyat, R. V., Zipperer, W. C., Parmelee, R. W., Carreiro, M. M., & Medley, K. (1997). Ecosystem processes along an urban-to-rural gradient. Urban ecology. Springer. Boston, MA. https://doi.org/10.1007/978-0-387-73412-5_18
Mensah, S., Dimobe, K., Noulèkoun, F., van der Plas, F., & Seifert, T. (2024). Phylogenetic diversity and community-wide trait means offer different insights into mechanisms regulating aboveground carbon storage. Science of the Total Environment, 907, 167905. https://doi.org/10.1016/j.scitotenv.2023.167905
Morelli, F., Benedetti, Y., Perna, P., & Santolini, R. (2018). Associations among taxonomic diversity, functional diversity, and evolutionary distinctiveness vary among environments. Ecological Indicators, 88, 8–16. https://doi.org/10.1016/j.ecolind.2018.01.022
Natuhara, Y., & Hashimoto, H. (2009). Spatial pattern and process in urban animal communities. In: Ecology of Cities and Towns: A Comparative Approach. Cambridge University Press, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Sakai, Japan, pp 197–214.
Pacheco, C. A. G. (2020). Estimación del almacenamiento y retención de dióxido de carbono en el arbolado urbano público de la zona de Achumani de la ciudad de La Paz a través de una aplicación móvil. Fides Et Ratio, 19, 153–174.
Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526–528. https://doi.org/10.1093/bioinformatics/bty633
Pavoine, S., & Bonsall, M. B. (2011). Measuring biodiversity to explain community assembly: A unified approach. Biological Reviews, 86(4), 792–812. https://doi.org/10.1111/j.1469-185X.2010.00171.x
Paz-Roca, M. A., & Mostacedo, B. (2020). Biomasa aérea de árboles en bosques secos de la ecorregión Chiquitana en Alta Vista, Santa Cruz, Bolivia. Kempffiana, 16(2), 1–15.
Peralta-Rivero, C. (2022). Modelos productivos de desarrollo rural y su contribución a la generación de servicios ecosistémicos en Bolivia. Revista Grifos, 32(59), 1–24. https://doi.org/10.22295/grifos.v32i59.7147
Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., & Hérault, B. (2017). Biomass: An R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8(9), 1163–1167. https://doi.org/10.1111/2041-210X.12753
Richards, M. B., & Méndez, V. E. (2014). Interactions between carbon sequestration and shade tree diversity in a smallholder coffee cooperative in El Salvador. Conservation Biology, 28(2), 489–497. https://doi.org/10.1111/cobi.12181
Richter, S., Haase, D., Thestorf, K., & Makki, M. (2020). Carbon pools of Berlin, Germany: Organic carbon in soils and aboveground in trees. Urban Forestry & Urban Greening, 54, Article 126777. https://doi.org/10.1016/j.ufug.2020.126777
Schittko, C., Onandia, G., Bernard-Verdier, M., Heger, T., Jeschke, J. M., Kowarik, I., Maaß, S., & Joshi, J. (2022). Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. Journal of Ecology, 110(4), 916–934. https://doi.org/10.1111/1365-2745.13852
Serrano, M., & Vildozo, A. (2015). Avances de la investigación botánica en Chuquisaca: Retrospectiva y perspectivas. Revista de la Sociedad Boliviana de Botánica, 8(1), 57–60.
Shirima, D. D., Totland, Ø., Munishi, P. K. T., & Moe, S. R. (2015). Relationships between tree species richness, evenness and aboveground carbon storage in montane forests and miombo woodlands of Tanzania. Basic and Applied Ecology, 16(3), 239–249. https://doi.org/10.1016/j.baae.2014.11.008
Solomon, L. W., Arunrat, N., Phutthai, T., & Wisawapipat, W. (2024). Carbon stock potential of trees in selected urban un-conserved forest in Entoto Mount Forest, Addis Ababa, Ethiopia. E3S Web of Conferences, 557, 03001. https://doi.org/10.1051/e3sconf/202455703001
Sun, Y., Xie, S., & Zhao, S. (2019). Valuing urban green spaces in mitigating climate change: A city-wide estimate of aboveground carbon stored in urban green spaces of China’s capital. Global Change Biology, 25(5), 1717–1732. https://doi.org/10.1111/gcb.14566
Vallejo-Joyas, M.I., Londoño-Vega, A.C., López-Camacho, R., Galeano, G, Álvarez-Dávila, E. & Devia-Álvarez, W. (2005). Establecimiento de parcelas permanentes en bosques de Colombia. Volumen I. In: Vallejo-Joyas MI, Londoño-Vega AC López-Camacho R., Galeano G. Á-DE y D-ÁW (ed) Serie: Métodos para estudios ecológicos a largo plazo. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá DC. p. 310.
Warner, K., Sonti, N. F., Cook, E. M., Hallett, R. A., Hutyra, L. R., & Reinmann, A. B. (2024). Urbanization exacerbates climate sensitivity of eastern United States broadleaf trees. Ecological Applications, 34(4), e2970. https://doi.org/10.1002/eap.2970
Descargas
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Scientia Agropecuaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).

