Contribution of trees to carbon stocks in urban–rural ecosystems: Taxonomic, phylogenetic, and functional diversity in response to bioclimatic and geographic factors

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2026.006

Palabras clave:

evolutionary relationships, species composition, sub-Andean ecosystem, tree richness, traits functions

Resumen

Tree diversity plays a key role in mitigating climate change and enhancing ecosystem resilience. This study evaluated the contribution of trees across three habitats within the urban–rural gradient of Sucre, Bolivia: urban (UF), native (NF), and exotic (EF). Carbon sequestration, as well as taxonomic (TD), phylogenetic (PD), and functional (FD) diversity, were analyzed in relation to bioclimatic (temperature and precipitation) and geographic (altitude) factors. The methodology included the recording of botanical and ecological traits, along with the measurement of dendrometric classes (DBH ≥ 10 cm) in 12 temporary circular plots per habitat. Results showed higher carbon stocks in the urban forest (268.36 ± 2.76 MgC/ha), followed by the exotic (159.53 ± 0.86 MgC/ha) and the native forest (39.64 ± 0.41 MgC/ha). A total of 31 species from 19 families were identified, with marked evolutionary divergence between Pinaceae and Cupressaceae compared to Fabaceae. The urban habitat presented the highest taxonomic diversity (~51.6%), the highest phylogenetic diversity (~72%), and the greatest carbon fixation (~42%). These findings highlight the fundamental role of tree diversity in carbon sequestration, biodiversity conservation, and landscape connectivity, emphasizing the need to integrate it into sustainable urban–rural planning through adaptation and mitigation strategies that strengthen ecological resilience and ecosystem services in the urban–rural ecosystem of Sucre.

 

Citas

Ali, A., & Yan, E-R. (2017). Relationships between biodiversity and carbon stocks in forest ecosystems: A systematic literature review. Tropical Ecology, 58(1), 1–14.

Araujo-Murakami, A., Milliken, W., Klitgaard, B., Carrión-Cuéllar, A. M., Vargas-Lucindo, S., & Parada-Arias, R. (2016). Biomasa y Carbono en la Selva Amazónica de Várzea y Terra Firme en el Oeste de Pando. Kempffiana, 12(1), 3–19.

Barrico, L., & Castro, P. (2016). Urban biodiversity and cities’ sustainable development. In P. Castro, U. Azeiteiro, P. Bacelar-Nicolau, W. Leal Filho, & A. Azul (Eds.), Biodiversity and education for sustainable development (pp. 29-43). Springer. https://doi.org/10.1007/978-3-319-32318-3_3

Borges, E. R., Dexter, K. G., Pyles, M. V., Bueno, M. L., dos Santos, R. M., Fontes, M. A. L., & Carvalho, F. A. (2021). The interaction of land-use history and tree species diversity in driving variation in the aboveground biomass of urban versus non-urban tropical forests. Ecological Indicators, 129, 107915. https://doi.org/10.1016/j.ecolind.2021.107915

Bretz, F., Hothorn, T., & Westfall, P. (2011). Multiple Comparisons Using R (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781420010909

Cai, Z., Fang, C., He, Q., Yan, J., Gao, D., & Liu, Z. (2022). Urban-rural gradient identification and ecosystem service response in main urban area of Nanchang based on landscape clustering. Research of Environmental Sciences, 35(3), 806-817. https://doi.org/10.13198/j.issn.1001-6929.2021.12.17

Chase, M. W., Christenhusz, M. J. M., Fay, M. F., Byng, J. W., Judd, W. S., Soltis, D. E., Mabberley, D. J., Sennikov, A. N., Soltis, P. S., & Stevens, P. F. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1–20. https://doi.org/10.1111/boj.12385

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., et al. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629

Conti, G., & Díaz, S. (2013). Plant functional diversity and carbon storage-An empirical test in semi-arid forest ecosystems. Journal of Ecology, 101(1), 18–28. https://doi.org/10.1111/1365-2745.12012

de Paula, M. D., Costa, C. P. A., & Tabarelli, M. (2011). Carbon storage in a fragmented landscape of Atlantic forest: The role played by edge-affected habitats and emergent trees. Tropical Conservation Science, 4(3), 349–358. https://doi.org/10.1177/194008291100400310

Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., et al. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489

Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1), 1–10. https://doi.org/10.1016/0006-3207 (92)91201-3

Febiriyanti, A., Pradana, D. H., & Putrika, A. (2021). Estimation of carbon stocks from tree stands vegetation in Universitas Indonesia’s urban forest, Depok. Journal of Physics: Conference Series, 1725(1), 012043. https://doi.org/10.1088/1742-6596/1725/1/012043

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Freiberg, M., Winter, M., Gentile, A., Zizka, A., Muellner-Riehl, A. N., Weigelt, A., & Wirth, C. (2020). LCVP, The Leipzig catalogue of vascular plants, a new taxonomic reference list for all known vascular plants. Scientific Data, 7(1), 416. https://doi.org/10.1038/s41597-020-00702-z

GAM-Sucre. 2021. Plan territorial de desarrollo integral para “vivir bien” del Municipio de Sucre. 2021–2025. Gobierno Autónomo Municipal de Sucre. p. 51.

Gebre, T., & Gebremedhin, B. (2019). The mutual benefits of promoting rural-urban interdependence through linked ecosystem services. Global Ecology and Conservation, 20, e00707. https://doi.org/10.1016/j.gecco.2019.e00707

Gebru, T., Solomon, N., Siyum, Z. G., Gufi, Y., Gidey, T., Newete, S. W., Manaye, A., & Birhane, E. (2025). Evaluating urban green spaces for biodiversity and carbon sequestration in Rama town, Tigray, Ethiopia. Ecological Frontiers. Advance online publication. https://doi.org/10.1016/j.ecofro.2025.06.019

Guan, Q., Chen, L., Wang, Q., Guan, C., & Li, H. (2024). Dynamical identification of urban-rural gradient and ecosystem service response: A case study of Jinghong City, China. Land, 13(3), 306. https://doi.org/10.3390/land13030306

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.

Hartig, F., & Hartig, M. F. (2017). Package ‘DHARMa.’ R Packag. 1-54. https://cran.r-project.org/web/packages/DHARMa/index.html

Jevon, F., Crown, C. A., Clark, J. A. G., Doroski, D. A., Darling, L., Sonti, N. F., Yesilonis, I. D., Dietsch, G., Bradford, M., & Pregitzer, C. C. (2024). Native trees are responsible for the high carbon density in urban natural area forests across eight United States cities. Journal of Applied Ecology, 62(1), 132–143. https://doi.org/10.1111/1365-2664.14823

Jin, Y., & Qian, H. (2022). V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Diversity, 44(4), 335–339. https://doi.org/10.1016/j.pld.2022.05.005

Knapp, S., Dinsmore, L., Fissore, C., Hobbie, S. E., Jakobsdottir, I., Kattge, J., King, J. Y., Klotz, S., McFadden, J. P., & Cavender-Bares, J. (2012). Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient. Ecology, 93(Sup8), S83–S98. https://doi.org/10.1890/11-0392.1

Kurtz, B. C., de Almeida, T. M. H., Coelho, M. A. N., Deccache, L. S. J., Tortorelli, R. M., Gonzaga, D. R., Madureira, L. K., Guedes-Oliveira, R., Barros, C. F., & de Siqueira, M. F. (2024). Quantifying the carbon stocks in urban trees: The Rio de Janeiro Botanical Garden as an important tropical carbon sink. Journal of Zoological and Botanical Gardens, 5(4), 579–589. https://doi.org/10.3390/jzbg5040039

López-López, S. F., Martínez-Trinidad, T., Benavides-Meza, H. M., García-Nieto, M., & Ángeles-Pérez, G. (2018). Reservorios de biomasa y carbono en el arbolado de la primera sección del Bosque de Chapultepec, Ciudad de México. Madera y Bosques, 24(3), e2431620. https://doi.org/10.21829/myb.2018.2431620

Lososová, Z., Čeplová, N., Chytrý, M., Tichý, L., Danihelka, J., Fajmon, K., Láníková, D., Preislerová, Z., & Řehořek, V. (2016). Is phylogenetic diversity a good proxy for functional diversity of plant communities? A case study from urban habitats. Journal of Vegetation Science, 27(5), 1036-1046. https://doi.org/10.1111/jvs.12414

Lwasa, S., Seto, K. C., Bai, X., Blanco, H., Gurney, K. R., et al. (2022). Urban systems and other settlements. In P. R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, & J. Malley (Eds.), Climate change 2022: Mitigation of climate change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, pp 861–952. https://doi.org/10.1017/9781009157926.010

Maldonado, A. A., Ferreira, W. J., & De la Barra, N. (2023). Estimation of carbon fixation in the vegetation covers of the San Pedro mountain range, Cochabamba - Bolivia. Acta Nova, 11(1), 1683-0768. https://doi.org/10.35319/acta-nova.202316 https://acortar.link/1WAFiJ

Malhi, Y., Baker, T. R., Phillips, O. L., Almeida, S., Alvarez, E., et al. (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology, 10(5), 563–591. https://doi.org/10.1111/j.1529-8817.2003.00778.x

Manrique, S., Franco, J., Núñez, V., & Seghezzo, L. (2011). Potential of native forests for the mitigation of greenhouse gases in Salta, Argentina. Biomass and Bioenergy, 35(5), 2184–2193. https://doi.org/10.1016/j.biombioe.2011.02.029

Marshall, F., Dolley, J., Bisht, R., Priya, R., Waldman, L., Amerasinghe, P. & Randhawa, P. (2018). Ecosystem services and poverty alleviation in urbanising contexts. In: Ecosystem Services and Poverty Alleviation: Trade-Offs and Governance. Taylor and Francis, Environment and Development at the Science Policy Research Unit (SPRU), University of Sussex, United Kingdom, pp 111–125.

McDonnell, M. J., & Pickett, S. T. A. (1990). Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology, 71(4), 1232–1237. https://doi.org/10.2307/1938259

McDonnell, M. J., Pickett, S. T. A., Groffman, P., Bohlen, P., Pouyat, R. V., Zipperer, W. C., Parmelee, R. W., Carreiro, M. M., & Medley, K. (1997). Ecosystem processes along an urban-to-rural gradient. Urban ecology. Springer. Boston, MA. https://doi.org/10.1007/978-0-387-73412-5_18

Mensah, S., Dimobe, K., Noulèkoun, F., van der Plas, F., & Seifert, T. (2024). Phylogenetic diversity and community-wide trait means offer different insights into mechanisms regulating aboveground carbon storage. Science of the Total Environment, 907, 167905. https://doi.org/10.1016/j.scitotenv.2023.167905

Morelli, F., Benedetti, Y., Perna, P., & Santolini, R. (2018). Associations among taxonomic diversity, functional diversity, and evolutionary distinctiveness vary among environments. Ecological Indicators, 88, 8–16. https://doi.org/10.1016/j.ecolind.2018.01.022

Natuhara, Y., & Hashimoto, H. (2009). Spatial pattern and process in urban animal communities. In: Ecology of Cities and Towns: A Comparative Approach. Cambridge University Press, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Sakai, Japan, pp 197–214.

Pacheco, C. A. G. (2020). Estimación del almacenamiento y retención de dióxido de carbono en el arbolado urbano público de la zona de Achumani de la ciudad de La Paz a través de una aplicación móvil. Fides Et Ratio, 19, 153–174.

Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526–528. https://doi.org/10.1093/bioinformatics/bty633

Pavoine, S., & Bonsall, M. B. (2011). Measuring biodiversity to explain community assembly: A unified approach. Biological Reviews, 86(4), 792–812. https://doi.org/10.1111/j.1469-185X.2010.00171.x

Paz-Roca, M. A., & Mostacedo, B. (2020). Biomasa aérea de árboles en bosques secos de la ecorregión Chiquitana en Alta Vista, Santa Cruz, Bolivia. Kempffiana, 16(2), 1–15.

Peralta-Rivero, C. (2022). Modelos productivos de desarrollo rural y su contribución a la generación de servicios ecosistémicos en Bolivia. Revista Grifos, 32(59), 1–24. https://doi.org/10.22295/grifos.v32i59.7147

Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., & Hérault, B. (2017). Biomass: An R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8(9), 1163–1167. https://doi.org/10.1111/2041-210X.12753

Richards, M. B., & Méndez, V. E. (2014). Interactions between carbon sequestration and shade tree diversity in a smallholder coffee cooperative in El Salvador. Conservation Biology, 28(2), 489–497. https://doi.org/10.1111/cobi.12181

Richter, S., Haase, D., Thestorf, K., & Makki, M. (2020). Carbon pools of Berlin, Germany: Organic carbon in soils and aboveground in trees. Urban Forestry & Urban Greening, 54, Article 126777. https://doi.org/10.1016/j.ufug.2020.126777

Schittko, C., Onandia, G., Bernard-Verdier, M., Heger, T., Jeschke, J. M., Kowarik, I., Maaß, S., & Joshi, J. (2022). Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. Journal of Ecology, 110(4), 916–934. https://doi.org/10.1111/1365-2745.13852

Serrano, M., & Vildozo, A. (2015). Avances de la investigación botánica en Chuquisaca: Retrospectiva y perspectivas. Revista de la Sociedad Boliviana de Botánica, 8(1), 57–60.

Shirima, D. D., Totland, Ø., Munishi, P. K. T., & Moe, S. R. (2015). Relationships between tree species richness, evenness and aboveground carbon storage in montane forests and miombo woodlands of Tanzania. Basic and Applied Ecology, 16(3), 239–249. https://doi.org/10.1016/j.baae.2014.11.008

Solomon, L. W., Arunrat, N., Phutthai, T., & Wisawapipat, W. (2024). Carbon stock potential of trees in selected urban un-conserved forest in Entoto Mount Forest, Addis Ababa, Ethiopia. E3S Web of Conferences, 557, 03001. https://doi.org/10.1051/e3sconf/202455703001

Sun, Y., Xie, S., & Zhao, S. (2019). Valuing urban green spaces in mitigating climate change: A city-wide estimate of aboveground carbon stored in urban green spaces of China’s capital. Global Change Biology, 25(5), 1717–1732. https://doi.org/10.1111/gcb.14566

Vallejo-Joyas, M.I., Londoño-Vega, A.C., López-Camacho, R., Galeano, G, Álvarez-Dávila, E. & Devia-Álvarez, W. (2005). Establecimiento de parcelas permanentes en bosques de Colombia. Volumen I. In: Vallejo-Joyas MI, Londoño-Vega AC López-Camacho R., Galeano G. Á-DE y D-ÁW (ed) Serie: Métodos para estudios ecológicos a largo plazo. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá DC. p. 310.

Warner, K., Sonti, N. F., Cook, E. M., Hallett, R. A., Hutyra, L. R., & Reinmann, A. B. (2024). Urbanization exacerbates climate sensitivity of eastern United States broadleaf trees. Ecological Applications, 34(4), e2970. https://doi.org/10.1002/eap.2970

Descargas

Archivos adicionales

Publicado

2025-10-27

Cómo citar

Serrano, M., Bejarano, J., Lozano, R., Jiménez, M. H., & Felipez, W. (2025). Contribution of trees to carbon stocks in urban–rural ecosystems: Taxonomic, phylogenetic, and functional diversity in response to bioclimatic and geographic factors. Scientia Agropecuaria, 17(1), 91-101. https://doi.org/10.17268/sci.agropecu.2026.006

Número

Sección

Artículos originales