Agroforestry and montane forest management as strategies to mitigate carbon loss and sustain ecosystem functions in the Central Andes of Peru

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2026.005

Palabras clave:

carbon storage, soil organic carbon, tropical montane forest, agroforestry, land-use change, Central Andes

Resumen

Land-use change in the Central Andes of Peru has led to the widespread conversion of tropical montane forests, significantly reducing their carbon storage capacity. This study estimated aboveground and soil carbon stocks across a disturbance gradient: croplands (C), agroforestry systems (AF), regenerating montane forests (BMR), and conserved montane forests (BMC). Using destructive and non-destructive sampling, 61 plots (0.1 ha each) were assessed, measuring live and dead aboveground biomass, fine roots, and soil organic carbon down to 1 meter. Results show that BMC had the highest total carbon stock (575.33 ± 215.4 Mg C ha⁻¹), followed by BMR (386.53 ± 186.6), AF (276.69 ± 172.5), and C (205.14 ± 114.03). Soil organic carbon was the dominant carbon pool across all land uses, contributing between 93% (in croplands) and 62% (in conserved forests) of total carbon, highlighting its central role in carbon dynamics. Carbon stocks were significantly associated with vegetation structural attributes (basal area, diameter at breast height, canopy cover) and soil properties (texture, cation exchange capacity, organic matter content). Trees with diameter at breast height ≥ 30 cm contributed over 50% of aboveground carbon, underlining their importance in biomass carbon storage. These findings reveal a clear gradient of loss in the ecosystem service of carbon storage, driven by land-use intensification and the simplification of forest structure. However, they also demonstrate that the recovery of degraded forests and the implementation of agroforestry systems are viable strategies to reduce the loss of ecosystem functions and contribute meaningfully to climate change mitigation.

Citas

Arcanjo, F. A., Taglianetti, E., & Torezan, J. M. D. (2020). Big trees, big fall: Large-diameter trees and the fate of carbon stocks in Atlantic Forest remnants. Oecologia Australis, 24(2), 438–447. https://doi.org/10.4257/oeco.2020.2402.14

Bedoya-Garland, E., Aramburú, C. E., & López-de-Romaña, A. (2023). La producción de nuevas naturalezas en la alta Amazonía peruana (1940–1981) y las tesis de Ester Boserup. Revista Kawsaypacha: Sociedad y Medio Ambiente, 12, A-008. https://doi.org/10.18800/kawsaypacha.202302.A008

Bruijnzeel, L. A., Mulligan, M., & Scatena, F. N. (2010). Hydrometeorology of tropical montane cloud forests: Emerging patterns. Hydrological Processes, 24(3), 385–398. https://doi.org/10.1002/hyp.7974

Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87–99. https://doi.org/10.1007/s00442-005-0100-x

Cuellar Bautista, J. E., & Salazar Hinostroza, E. J. (2016). Dinámica del carbono almacenado en los diferentes sistemas de uso de la tierra en el Perú. Instituto Nacional de Innovación Agraria (INIA). https://repositorio.inia.gob.pe/handle/20.500.12955/490

Cuellar, J., Salazar, E., & Fernández, K. (2015). Efecto del cambio de uso del bosque tropical sobre carbono total almacenado, cuenca de Aguaytía, Perú. Revista Forestal del Perú, 27(1–2), 7–25. https://repositorio.inia.gob.pe/handle/20.500.12955/559

Crespo, A. M., Souza, M. N., & Silva, M. A. B. da. (2023). Ciclo do carbono e sistemas agroflorestais na sustentabilidade da produção agrícola: Revisão de literatura. Incaper em Revista, 13–14, 6–19. https://doi.org/10.54682/ier.v.13e14.p06.19

De Beenhouwer, M., Geeraert, L., Mertens, J., Van Geel, M., Aerts, R., Vanderhaegen, K., & Honnay, O. (2016). Biodiversity and carbon storage co-benefits of coffee agroforestry across a gradient of increasing management intensity in the SW Ethiopian highlands. Agriculture, Ecosystems & Environment, 222, 193–199. https://doi.org/10.1016/j.agee.2016.02.017

Debie, R., & Abro, T. W. (2025). Carbon stock dynamics in biosphere reserves and mountainous forest ecosystems. Trees, Forests and People, 19, 100789. https://doi.org/10.1016/j.tfp.2025.100789

Díaz, P., Fachin, G., Tello, C., & Arévalo, L. (2016). Carbono almacenado en cinco sistemas de uso de tierra en la región San Martín, Perú. Revista Internacional de Desarrollo Regional Sustentable, 1(2), 57–67.

Díaz-Cháux, J. T., Ordoñez-García, M. A., Cerón, C. T., & Velázquez-Valencia, A. (2024). Biomasa y carbono almacenado en bosques de la Amazonia colombiana. Caldasia, 46(1). https://doi.org/10.15446/caldasia.v46n1.99728

Ehrenbergerová, L., Cienciala, E., Kučera, A., Guy, L., & Habrová, H. (2015). Carbon stock in agroforestry coffee plantations with different shade trees in Villa Rica, Peru. Agroforestry Systems, 90, 433–445. https://doi.org/10.1007/s10457-015-9865-z

Ensslin, A., Rutten, G., Pommer, U., Zimmermann, R., Hemp, A., & Fischer, M. (2015). Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere, 6(3), 1–15. https://doi.org/10.1890/es14-00492.1

Gibbon, A., Silman, M., Malhi, Y., Fisher, J., Meir, P., Zimmermann, M., Dargie, G., Farfan, W., & Garcia, K. (2010). Ecosystem carbon storage across the grassland–forest transition in the high Andes of Manu National Park, Peru. Ecosystems, 13(7), 1097–1111. https://doi.org/10.1007/s10021-010-9376-8

Gonzalez, R., Kroll, L., & Vargas, R. (2014). Carbon stocks and dynamics in Andean montane forests: Linking soil and vegetation under land-use change scenarios. Journal of Environmental Management, 143, 95–104. https://doi.org/10.1016/j.jenvman.2014.04.006

Gusli, S., Sumeni, S., Sabodin, R., Muqfi, I. H., Nur, M., Hairiah, K., Useng, D., & Van Noordwijk, M. (2020). Soil organic matter, mitigation of and adaptation to climate change in cocoa-based agroforestry systems. Land, 9(9), 323. https://doi.org/10.3390/land9090323

Hansen, M. C., Wang, L., Song, X. P., Tyukavina, A., Turubanova, S., Potapov, P. V., & Stehman, S. V. (2020). The fate of tropical forest fragments. Science Advances, 6(11), eaax8574. https://doi.org/10.1126/sciadv.aax8574

Huang, X., Ibrahim, M. M., Luo, Y., Jiang, L., Chen, J., & Hou, E. (2024). Land-use change alters soil organic carbon: Constrained global patterns and predictors. Earth’s Future, 12(5). https://doi.org/10.1029/2023EF00425

Komposch, A., Ensslin, A., Fischer, M., & Hemp, A. (2022). Aboveground deadwood biomass and composition along elevation and land-use gradients at Mount Kilimanjaro. Frontiers in Ecology and Evolution, 9, 732092. https://doi.org/10.3389/fevo.2021.732092

La Torre, M., Herrando, S., & Young, K. (2007). Diversity and structural patterns for tropical montane and premontane forests of central Peru, with an assessment of the use of higher-taxon surrogacy. Biodiversity and Conservation, 16(10), 2965–2988. https://doi.org/10.1007/s10531-007-9155-9

Noriega-Puglisevich, J. A., & Eckhardt, K. I. (2024). Hydrological effects of the conversion of tropical montane forests to agricultural land in the central Andes of Peru. Environmental Quality Management, 1–11. https://doi.org/10.1002/tqem.22221

Montagnini, F., & Nair, P. (2004). Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Agroforestry Systems, 61–62(1–3), 281–295. https://doi.org/10.1023/B:AGFO.0000029005.92691.79

Mugagga, F., Buyinza, M., Nabanoga, G. N., & Katongole, C. (2015). Land use change, policy, and forest transitions in Uganda: A century of forest loss and recovery. Forest Policy and Economics, 50, 1–9. https://doi.org/10.1016/j.forpol.2014.06.005

Noormets, A., Epron, D., Domec, J., McNulty, S., Fox, T., Sun, G., & King, J. (2015). Effects of forest management on productivity and carbon sequestration: A review and hypothesis. Forest Ecology and Management, 355, 124–140. https://doi.org/10.1016/j.foreco.2015.05.019

Ojoatre, S., Barlow, J., Jacobs, S. R., & Rufino, M. C. (2024). Recovery of aboveground biomass, soil carbon stocks and species diversity in tropical montane secondary forests of East Africa. Forest Ecology and Management, 552, 121569. https://doi.org/10.1016/j.foreco.2023.121569

Pan, J., Chen, S., He, D., Zhou, H., Ning, K., Ma, N., Li, K., Liao, D., Mi, W., Wu, Q., Zhang, C., & Dong, Z. (2024). Agroforestry increases soil carbon sequestration, especially in arid areas: A global meta-analysis. Catena, 249, 108667. https://doi.org/10.1016/j.catena.2024.108667

Peacock, J., Baker, T. R., Lewis, S. L., López-González, G., & Phillips, O. L. (2007). The RAINFOR database: Monitoring forest biomass and dynamics. Journal of Vegetation Science, 18(4), 535–542. http://www.jstor.org/stable/4499259

Peng, D., Zhang, B., Zheng, S., et al. (2025). Newly established forests dominated global carbon sequestration change induced by land cover conversions. Nature Communications, 16, 6570. https://doi.org/10.1038/s41467-025-61956-y

Perea-Ardila, M. A., Andrade-Castañeda, H. J., & Segura-Madrigal, M. A. (2021). Estimación de biomasa aérea y carbono con teledetección en bosques altoandinos de Boyacá, Colombia: Estudio de caso Santuario de Fauna y Flora Iguaque. Revista Cartográfica, 102, 91–123. https://doi.org/10.35424/rcarto.i102.821

Prada, C. M., Heineman, K. D., Pardo, M. J., Piponiot, C., & Dalling, J. W. (2025). Soil and biomass carbon storage is much higher in Central American than Andean montane forests. Biogeosciences, 22, 3615–3634. https://doi.org/10.5194/bg-22-3615-2025

Prakash, T., & Shimrah, T. (2023). A review on soil carbon sequestration in different land use and land cover. Ecology, Environment and Conservation, 29(Suppl. Issue 3), S332–S340. https://doi.org/10.53550/EEC.2023.v29i03s.060

Ramírez, J., Córdova, M., Imbaquingo, J., & Chagna, E. (2022). Modelos alométricos para estimar biomasa aérea en bosques secundarios montanos del noroccidente de Ecuador. Caldasia, 44(1), 82–94. https://doi.org/10.15446/caldasia.v44n1.88198

Ruiz, A., Ruiz-Sagaseta, A., Orcaray, L., Arricibita, F. J., Enrique, A., Soto, I. D., & Virto, I. (2021). Soil water retention and soil compaction assessment in a regional-scale strategy to improve climate change adaptation of agriculture in Navarre, Spain. Agronomy, 11(3), 607. https://doi.org/10.3390/agronomy11030607

Saputra, D., Sari, R., Hairiah, K., Roshetko, J., Suprayogo, D., & van Noordwijk, M. (2020). Can cocoa agroforestry restore degraded soil structure? Agroforestry Systems, 94, 2261–2276. https://doi.org/10.1007/s10457-020-00548-9

Segura, M., Kanninen, M., & Suárez, D. (2006). Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforestry Systems, 68(2), 143–150. https://doi.org/10.1007/s10457-006-9005-x

Senelwa, K., & Sims, R. E. H. (1998). Tree biomass equations for short rotation eucalypts grown in New Zealand. Biomass and Bioenergy, 13(3), 133–140. https://doi.org/10.1016/S0961-9534(97)00026-3

Six, J., Paustian, K., Elliott, E. T., & Combrink, C. (2000). Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of America Journal, 64(2), 681–689. https://doi.org/10.2136/sssaj2000.642681x

Soinne, H., Keskinen, R., Tähtikarhu, M., Kuva, J., & Hyväluoma, J. (2023). Effects of organic carbon and clay contents on structure-related properties of arable soils with high clay content. European Journal of Soil Science, 74(5), e13424. https://doi.org/10.1111/ejss.13424

Suhaili, N. S., Mhd Hatta, S., James, D., Hassan, A., Jalloh, M. B., Phua, M.-H., & Awang Besar, N. (2021). Soil carbon stocks and litterfall fluxes from the Bornean tropical montane forests, Sabah, Malaysia. Forests, 12(12), 1621. https://doi.org/10.3390/f12121621

Sun, Y., Wang, X., Zhang, Y., Duan, W., Xia, J., Wu, J., & Deng, T. (2024). Vegetation types can affect soil organic carbon and δ¹³C by influencing plant inputs in topsoil and microbial residue carbon composition in subsoil. Sustainability, 16(11), 4538. https://doi.org/10.3390/su16114538

Tovar, A., Tovar, C., Saito, J., Soto, A., Regal, F., Cruz, Z., Véliz, C., Vásquez, P., & Rivera, G. (2010). Yungas peruanas – Montane forests of the eastern slope of the Andes of Peru: An ecoregional perspective of conservation. Data Center for Conservation, Faculty of Forestry, National Agrarian University La Molina.

van Noordwijk, M., Rahayu, S., Hairiah, K., Wulan, Y. C., Farida, A., & Verbist, B. (2002). Carbon stock assessment for a forest-to-coffee conversion landscape in Sumber-Jaya (Lampung, Indonesia): From allometric equations to land use change analysis. Science in China Series C: Life Sciences, 45(Suppl.), 75–86.

van der Sande, M. T., Arets, E. J., Peña-Claros, M., Hoosbeek, M. R., Cáceres-Siani, Y., van der Hout, P., & Poorter, L. (2018). Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Functional Ecology, 32(2), 461–474. https://doi.org/10.1111/1365-2435.12968

Vancutsem, C., Achard, F., Pekel, J.-F., Vieilledent, G., Carboni, S., Simonetti, D., Gallego, J., Aragão, L. E. O. C., & Nasi, R. (2021). Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Science Advances, 7(10), eabe1603. https://doi.org/10.1126/sciadv.abe1603

VijayKumar, R., Tiwari, P., Daniel, S., Kumar, K. R., Mishra, I., Aneesh, K. S., & Shah, D. (2024). Agroforestry systems: A pathway to resilient and productive landscapes. International Journal of Environment and Climate Change, 14(12), 177–193. https://doi.org/10.9734/ijecc/2024/v14i124617

Vizcaíno-Bravo, Q., Williams-Linera, G., & Asbjornsen, H. (2020). Biodiversity and carbon storage are correlated along a land use intensity gradient in a tropical montane forest watershed, Mexico. Basic and Applied Ecology, 44, 24–34. https://doi.org/10.1016/j.baae.2019.12.004

Wanyama, I., Pelster, D. E., Butterbach-Bahl, K., Verchot, L. V., Martius, C., & Rufino, M. C. (2019). Soil carbon dioxide and methane fluxes from forests and other land use types in an African tropical montane region. Biogeochemistry, 143(2), 171–190. https://doi.org/10.1007/s10533-019-00555-8

Wilcke, W., Hess, T., Bengel, C., Homeier, J., Valarezo, C., & Zech, W. (2005). Coarse woody debris in a montane forest in Ecuador: Mass, C and nutrient stock, and turnover. Forest Ecology and Management, 205(1–3), 139–147. https://doi.org/10.1016/j.foreco.2004.10.044

Young, K., & León, B. (2000). Biodiversity conservation in Peru’s eastern montane forests. Mountain Research and Development, 20(3), 208–211. https://doi.org/10.1659/0276-4741(2000)020

Zhou, T., Lv, Y., Xie, B., Xu, L., Zhou, Y., Mei, T., Li, Y., Yuan, N., & Shi, Y. (2023). Topography and soil organic carbon in subtropical forests of China. Forests, 14(5), 1023. https://doi.org/10.3390/f14051023

Descargas

Publicado

2025-10-27

Cómo citar

Eckhardt, K. I., Maia, A. G., Noriega-Puglisevich, J. A., & Cachay Jara, W. (2025). Agroforestry and montane forest management as strategies to mitigate carbon loss and sustain ecosystem functions in the Central Andes of Peru. Scientia Agropecuaria, 17(1), 77-89. https://doi.org/10.17268/sci.agropecu.2026.005

Número

Sección

Artículos originales