Response of the transcription factor BABY BOOM of Arabidopsis thaliana L. in the formation of embryogenic calluses of cocoa leaves (Theobroma cacao L.)

Autores/as

  • Nikkolas Javier Alburqueque-Vasquez Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA). Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas
  • Angel David Hernández-Amasifuen Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín
  • Alexandra Jherina Pineda-Lázaro Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín
  • Jaime N. Fernández Ponce Departamento de Ciencias Biológicas, Universidad Nacional de Piura
  • Juan Carlos Guerrero-Abad Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA). Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas
  • Ligia García Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas
  • Mike Anderson Corazon-Guivin Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín

DOI:

https://doi.org/10.17268/sci.agropecu.2023.031

Palabras clave:

Embryogenic calluses, Arabidopsis thaliana, Theobroma cacao, BABY BOOM, transcription factor

Resumen

Cocoa (Theobroma cacao L.) is one of the most important economic crops worldwide. The propagation of elite varieties of cocoa has been achieved through somatic embryogenesis, but still one of the main limitations is the low rates of embryo formation, which is a genotype-dependent trait. Manipulation of transcription factors (TFs) such as BABY BOOM (BBM) promotes the transition of cocoa somatic cells from the vegetative to the embryonic state. This work validated the use of clonal cocoa leaves cv. IMC-67 to induce somatic embryogenesis, overcoming their recalcitrant limitation with the help of the introduction of TF-BBM from Arabidopsis thaliana (AtBBM). The vectors were constructed by the Gateway system using the donor vector pENTR/D-TOPO and the expression vector pk7WG2. The overexpression vector pk7WG2:AtBBM was obtained, allowing successful transformation into Agrobacterium tumefaciens GV3101. The AtBBM gene was characterized (1755 base pairs), and its expression was observed in the formation of embryogenic calluses in cocoa leaves. Overexpression of AtBBM allowed the obtainment of a 92% response in the formation of embryogenic callus in cocoa leaves with Agrobacterium-mediated vacuum infiltration and overexpression of the pk7WG2:AtBBM vector. This high transformation efficiency reached with the insertion of the overexpression vector provides validation of transient response of the TF AtBBM in the formation of embryogenic calluses in cocoa leaves of the IMC-67 clone. Through this methodology, it is possible to continue with studies of gene overexpression, insertion, silencing, and gene editing in Peruvian cocoa.

Citas

Abdullah, Faraji, S., Mehmood, F., Malik, H., Ahmed, I., Heidari, P., & Poczai, P. (2021). The GASA Gene Family in Cacao (Theobroma cacao, Malvaceae): Genome Wide Identification and Expression Analysis. Agronomy, 11, 1425.

Akter, S., Ahamed, A., & Hossain, M. (2012). Agrobacterium mediated Genetic Transformation of Eggplant (Solanum melongena L.). Int J Phar Theach Pract, 3, 275-280.

Ahn, C. H., Han, J. Y., Park, H. S., Yoon, H. W., Shin, J. W., et al. (2023). Isolation and Expression of Transcription Factors Involved in Somatic Embryo Development by Transcriptome Analysis of Embryogenic Callus of Thuja koraiensis. Horticulturae, 9(2), 131.

Arévalo-Gardini, E., Arévalo-Hernández, C., Baligar, V., & He, Z., (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of The Total Environment, 605, 792-800.

Carrillo, L., Baroja-Fernández, E., Renau-Morata, B., Muñoz, F. J., Canales, J., et al. (2023). Ectopic expression of the AtCDF1 transcription factor in potato enhances tuber starch and amino acid contents and yield under open field conditions. Front. Plant Sci., 14, 1010669.

Chincinska, I. 2021. Leaf infiltration in plant science: old method, new possibilities. Plant Methods, 17(1), 1-21.

da Silva, R., Souza, G., Lemos, L., Lopes, U., Patrocinio, N., et al. (2017). Genome size, cytogenetic data and transferability of EST-SSR markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae). PLoS ONE, 12(2), e0170799.

da Silva, T., Cidade, L., Alvim, F., Cascardo, J., & Costa, M. (2008). Somatic embryogenesis and plant regeneration in elite clones of Theobroma cacao. Pesquisa Agropecuaria Brasileira, 43(10), 1433-1436.

Fister, A., Landherr, L., Perryman, M., Zhang, Y., Guiltinan, M., & Maximova, S. (2018). Glucocorticoid receptor-regulated TcLEC2 expression triggers somatic embryogenesis in Theobroma cacao leaf tissue. PLoS One, 13(11), e0207666.

Florez, S., Erwin, R., Maximova, S., Guiltinan, M., & Curtis, W. (2015). Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol, 15, 121.

Garcia, C., Marelli, J., Motamayor, J., & Villela, C. (2018). Somatic Embryogenesis in Theobroma cacao L. Methods in Molecular Biology, 1815, 227-245.

García, L., Angulo, F., Hernández-Amasifuen, A.D., Corazon-Guivin, M. A., Alburquerque, J., et al. (2021). Global studies on cadmium in relation to Theobroma cacao: A bibliometric analysis from Scopus (1996 -2020). Scientia Agropecuaria, 12(4), 611-623.

Guidarelli, M., & Baraldi, And. (2015). Transient transformation meets gene function discovery: the strawberry fruit case. Frontiers in plant science, 6, 444.

Henao, A., de la Hoz, T., Ospina, T., Atehortúa, L. & Urrea, A. (2018). Evaluation of the potential of regeneration of different Colombian and commercial genotypes of cocoa (Theobroma cacao L.) via somatic embryogenesis. Scientia Horticulturae, 229, 148-156.

Horstman, A., Li, M., Heidmann, I., Weemen, M., & Chen, B. (2017). The BABY BOOM Transcription Factor Activates the LEC1-ABI3-FUS3-LEC2 Network to Induce Somatic Embryogenesis. Plant Physiol., 175(2), 848-857.

Jha, P., & Kumar, V. (2018). BABY BOOM (BBM): a candidate transcription factor gene in plant biotechnology. Biotechnology letters, 40(11), 1467-1475.

Kajla, M., Roy, A., Singh, I. K., & Singh, A. (2023). Regulation of the regulators: Transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs. Front. Plant Sci., 14, 1126567.

Keilwagen, J., Wenk, M., Erickson, J. L., Schattat, M., Grau, J., & Hartung, F. (2016). Using intron position conservation for homology-based gene prediction. Nucleic acids research, 44(9), e89.

Khalil, M., Mitra, S., Toma, T., Hoque, M., & Sarker, R. (2022). In vitro regeneration and overexpression of pea DNA helicase 45 (PDH45) gene through Agrobacterium-mediated genetic transformation in oilseed Brassica spp. Dhaka University Journal of Biological Sciences, 30(3), 345-358.

Koné, D., Kouassi, M., N ́Nang, O., & Koffi, E. (2019). Induction of somatic embryos of recalcitrant genotypes of Theobroma cacao L. Journal of Applied Biosciences, 133, 13552-13560.

Li, J., Park, E., von Arnim, A. G., & Nebenführ, A. (2009). The FAST technique: a simplified Agrobacterium based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods, 5, 6.

Lu, Y., Chen, X., Wu, Y., Wang, Y., He, Y., & Wu, Y. (2013). Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay. PLoS ONE, 8, e57171.

Maximova, S., Alemanno, L., Young, A., Ferriere, N., Traore, A., & Guiltinan, M. (2002). Efficiency, genotypic variability, and cellular origin of primary and secondary somatic embryogenesis of Theobroma cacao L. In Vitro Cell. Dev. Biol.-Plant, 8, 252-259.

Maximova, S., Marelli, J., Young, A., Pishak, S., Verica, J., & Guiltinan, M. (2006). Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides. Floor, 224, 740-749.

McElroy, M., Navarro, A., Mustiga, G., Stack, C., Gezan, S., et al. (2018). Prediction of cacao (Theobroma cacao) resistance to Moniliophthora spp. diseases via genome-wide association analysis and genomic selection. Frontiers in plant science, 9, 343.

Motamayor, J., Mockaitis, K., Schmutz, J., Haiminen, N., Cornejo, O., et al. (2013). The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome biology, 14(6), 1-25.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.

Ontiveros-Cisneros, A., Moss, O., Van Moerkercke, A., & Van Aken, O. (2022). Evaluation of Antibiotic-Based Selection Methods for Camelina sativa Stable Transformants. Cells, 11(7), 1068.

Pancaningtyas, S. (2015). Study on the presence and influence of phenolic compounds in callogenesis and somatic embryo development of cocoa (Theobroma cacao L.). Pelita Perkebunan (a Coffee and Cocoa Research Journal), 31(1), 14-20.

Pérez-Caselles, C., Faize, L., Burgos, L., & Alburquerque, N. (2021). Improving Adventitious Shoot Regeneration and Transient Agrobacterium-Mediated Transformation of Apricot (Prunus armeniaca L.) Hypocotyl Sections. Agronomy, 11(7), 1338.

Pierroz, G. (2023). Making babies: how auxin regulates somatic embryogenesis in Arabidopsis tissue culture. Plant J, 113, 5-6.

R Core Team, (2020). A: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available in: https://www.R-project.org/ (accessed 13. 12.2(2).

Rosabal, L., Puebla, Y., Pérez, S., Cordoví, U., Pupo, J., & Werbrouck, S. (2022). Effects of salicylic acid on the production of polyphenols and the reducing power of Theobroma cacao calli. Current Research in Biotechnology, 4, 47-57.

Sabbadini, S., Capriotti, L., Molesini, B., Pandolfini, T., Navacchi, O., Limera, C., Ricci, A., & Mezzetti, B. (2019). Comparison of regeneration capacity and Agrobacterium-mediated cell transformation efficiency of different cultivars and rootstocks of Vitis spp. via organogenesis. Scientific reports, 9(1), 1-10.

Samtani, H., Sharma, A., & Khurana, P. (2023). Ectopic overexpression of TaHsfA5 promotes thermomorphogenesis in Arabidopsis thaliana and thermotolerance in Oryza sativa. Plant Mol Biol., 112(4-5), 225-243.

Santoso, T., Apriana, A., Sisharmini, A., & Trijatmiko, K., (2018). Konstruksi dan Transformasi Gen OsERA1 ke Vektor Ekspresi serta Respon Tanaman Padi Transgenik Nipponbare-OsERA1 terhadap Cekaman Kekeringan. Journal AgroBiogen, 14(1), 23-36.

Shires, M., Florez, S., Lai, T., & Curtis, W. (2017). Inducible somatic embryogenesis in Theobroma cacao achieved using the DEX-activatable transcription factor-glucocorticoid receptor fusion. Biotechnol. Lett., 39, 1747-1755.

Srinivasan, C., Liu, Z., Heidmann, I., Supena, E., Fukuoka, H., Joosen, R., Lambalk, J., Angenet, G., Scorza, R., Custers, J., & Boutilier, K. (2006). Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Plant, 225(2), 341-351.

Traore, A. & Guiltinan, M. 2006. Effects of carbon source and explant type on somatic embryogenesis of four cacao genotypes. HortScience, 41, 753-758.

Tzfira, T., Vaidya, M., & Citovsky, V. (2002). Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proceedings of the National Academy of Sciences, 99(16), 10435-10440.

Viss, P. R., Brooks, E. M., & Driver, J. A. (1991). A simplified method for the control of bacterial contamination in woody plant tissue culture. In Vitro Cell. Dev. Biol., 27, 42.

Wickramasuriya, M., & Dunwell, J. (2018). Cacao biotechnology: current status and future prospects. Plant Biotechnology Journal, 16, 4-17.

Zou, X., & Sun, H. (2023). DOF transcription factors: Specific regulators of plant biological processes. Front. Plant Sci., 14, 1044918.

Descargas

Publicado

2023-09-18

Cómo citar

Alburqueque-Vasquez, N. J. ., Hernández-Amasifuen, A. D. ., Pineda-Lázaro, A. J. ., Fernández Ponce, J. N. ., Guerrero-Abad, J. C. ., García, L. ., & Corazon-Guivin, M. A. . (2023). Response of the transcription factor BABY BOOM of Arabidopsis thaliana L. in the formation of embryogenic calluses of cocoa leaves (Theobroma cacao L.). Scientia Agropecuaria, 14(3), 359-366. https://doi.org/10.17268/sci.agropecu.2023.031

Número

Sección

Artículos originales

Artículos más leídos del mismo autor/a