Efecto de factores bióticos y abióticos en el contenido de flavonoides en hojas de Passiflora sp. L.: Una revisión sistemática
DOI:
https://doi.org/10.17268/sci.agropecu.2023.039Palabras clave:
Flavonoides, fertilización, Passiflora, Hongos formadores de micorriza arbuscular, microorganismosResumen
El género Passiflora aporta el 17% a la producción mundial de flavonoides, por lo cual, dada la creciente demanda de dichos metabolitos, se han estudiado diversas estrategias para aumentar su producción en estas plantas. El objetivo de este trabajo fue analizar la información publicada sobre la relación del contenido de flavonoides en hojas de plantas del género Passiflora, la presencia de microorganismos, la fertilidad del suelo, el uso de abonos y acondicionadores edáficos, el manejo agronómico, factores climáticos y el estado fenológico de la planta. La búsqueda se realizó en nueve bases de datos: Web of Science, Nature, Agris, Dialnet, Scielo, Science Database-ProQuest, Scopus (Elsevier), Springer y EBSCOhost y dos motores de búsqueda: Google Académico y Semantic Scholar, obteniendo 19 artículos indexados. Los resultados obtenidos indican que los tratamientos que incluyen un solo factor biótico o abiótico en el cultivo aumentan la producción de flavonoides a nivel foliar hasta un 380%, mientras que la combinación de diferentes factores bióticos y abióticos aumentan la producción de este grupo de metabolitos hasta en un 491% a nivel foliar. Es entonces necesario evaluar el manejo agronómico integral del cultivo de Passiflora sp. para incrementar la concentración de estos metabolitos en hojas de ramas productivas con frutos en maduración plena listos para recolección (código BBCH 89), sin perder la posibilidad de uso del producto principal actual del cultivo, los frutos.
Citas
Altendorf, S. (2018). Minor Tropical Fruits: Mainstreaming a niche market. Food Outlook, 67-75 of OMS.
Amani-Machiani, M., Javanmard, A., Habibi Machiani, R., & Sadeghpour, A. (2022). Arbuscular mycorrhizal Fungi and Changes in Primary and Secondary Metabolites. Plants, 11(17), 2183. https://doi.org/10.3390/plants11172183
Antognoni, F., Zheng, S., Pagnucco, C., Baraldi, R., Poli, F., & Biondia, S. (2007). Induction of flavonoid production by UV-B radiation in Passiflora quadrangularis callus cultures. Fitoterapia, 78, 345-352. https://doi:10.1016/j.fitote.2007.02.001
Barp, E. A., Soares, G. L., Gosmann, G., Machado, A. M., Vecchi, C., & Moreira, G. R. (2006). Phenotypic plasticity in Passiflora suberosa L. (Passifloraceae): induction and reversion of two morphs by variation in light intensity. Brazilian journal of biology, 66(3), 853-862. https://doi.org/10.1590/s1519-69842006000500011
Campos, M., Uliana, M., Montero, D. V., Lima, G., & Ming, L. C. (2015). Effects of organic fertilization on biomass production and bioactive compounds in Passiflora incarnata L. Int J Phytomedicine, 2, 1-4. https://doi.org/10.15171/ijpni.2015.11
Chagnon, P. L., Bradley, R. L., Maherali, H., & Klironomos, J. N. (2013). A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci, 18(9), 484-491. https://doi.org/10.1016/j.tplants.2013.05.001
Cruz, J., Pereira, Z., Corrêa, R., Lamarão, C., Sanches, E., Campelo, P., & Bezerra, J. (2022). Bioactive compounds, functional properties, and technological application of Passiflora quadrangularis: A review. JSFA Reports, 3(4), 150-160. https://doi.org/10.1002/jsf2.108
Da Silva, A. P., Segatto, M. L., Stahl, A. M., & Gomes, V. (2020). Development and application of green and sustainable analytical methods for flavonoid extraction from Passiflora waste. BMC Chemistry, 14, 56. https://doi.org/10.1186/s13065-020-00710-5
Deng, B., Li, Y., Lei, G., & Liu, G. (2019). Effects of nitrogen availability on mineral nutrient balance and flavonoid accumulation in Cyclocarya paliurus. Plant Physiol. Biochem, 135, 111-118. https://doi.org/10.1016/j.plaphy.2018.12.001
Dhawan, K., Dhawan, S., & Sharma, A. (2004). Passiflora: a review update. J. Ethnopharmaco, 94(1), 1-23. https://doi.org/10.1016/j.jep.2004.02.023
Dini, I., Graziani, G., Fedele, F. L., Sicari, A., Vinale, F., Castaldo, L., & Ritieni, A. (2020). Effects of Trichoderma biostimulation on the phenolic profile of extra-virgin olive oil and olive oil by-products. Antioxidants, 9(4), 284. https://doi.org/10.3390/antiox9040284
Dzobo, K. (2022). The role of natural products as sources of therapeutic agents for innovative drug discovery. In: Comprehensive Pharmacology. Ed: Terry Kenakin, pp 408-422. https://doi.org/10.1016/B978-0-12-820472-6.00041-4
Fernandes, F. F., Wsposito, M. P., Gonçalves da Silva, M. R., Cardoso-Gustavson, P., Furlan, C. M., Hoshika, Y., Carrari, E., Magni, G., Domingos, M., & Paoletti, E. (2019). The passion fruit liana (Passiflora edulis Sims, Passifloraceae) is tolerant to ozone. Science of The Toal Environment, 656, 1091-1101. https://doi.org/10.1016/j.scitotenv.2018.11.425
Ghasemzadeh, A., Ashkani, S., Baghdadi, A., Pazoki, A., Jaafar, H. Z. E., & Rahmat, A. (2016). Improvement in Flavonoids and Phenolic Acids Production and Pharmaceutical Quality of Sweet Basil (Ocimum basilicum L.) by Ultraviolet-B Irradiation. Molecules, 21, 1-15. https://doi:10.3390/molecules2109120
Gosmann, G., Provensi. G., Comunello, L. N., & Rates, S. M. K. (2011). Composição química e aspectos farmacológicos de espécies de Passiflora L. (Passifloraceae). Revista Brasileira de Biociencias, 9(1), 88-99.
Goulart, M. C., Cueva, L. G., Hidalgo, K. J., Attili‐Angelis, D., & Fantinatti‐Garboggini, F. (2019). Comparison of specific endophytic bacterial communities in different developmental stages of Passiflora incarnata using culture‐dependent and culture‐independent analysis. Open Microbiol. J, 12, 1-16. https://doi.org/10.1002/mbo3.896
Guimaraes, S. F., Lima, I. M., & Modolo, L. V. (2020). Phenolic content and antioxidant activity of parts of Passiflora edulis as a function of plant developmental stage. Acta Bot. Bras, 34, 74-82. https://doi.org/10.1590/0102-33062019abb0148
Haukioja, E., Ossipov, V., Koricheva, J., Honkanen, T., Larsson, S., & Lempa, K. (1998). Biosynthetic origin of carbon-based secondary compounds: cause of variable responses of woody plants to fertilization? Cheoecology, 8, 133-139. https://doi.org/10.1007/s000490050018
He, X., Luan, F., Yang, Y., Wang, Z., Zhao, Z., et al. (2020). Passiflora edulis: An Insight Into Current Researches on Phytochemistry and Pharmacology. Front. Pharmacol, 11, 617. https://doi.org/10.3389/fphar.2020.00617
Hernández-Martínez, A., Lozano-Puentes, H., Camacho-Montealegre, C., Costa, G., & Díaz-Ariza, L. (2023). Establishing the Relationship Between Flavonoid Content, Mycorrhization, and Soil Nutritional Content in Different Species of the Genus Passiflora in Colombia. ACS Omega, 8, 40647-40656. https://doi.org/10.1021/acsomega.3c05606
Hodaei, M., Rahimmalek, M., Arzani, A., & Talebi, M. (2018). The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Ind. Crop. Prod, 120, 295–304. https://doi.org/10.1016/j.indcrop.2018.04.073.
Huang, R., Wu, W., Shen, S., Fan, J., Chang, Y., Chen, S., & Ye, X. (2018). Evaluation of colorimetric methods for quantification of citrus flavonoids to avoid misuse. Anal. Methods, 10(22), 2575-2587. https://doi.org/10.1039/C8AY00661J
Julkunen, R., Nenadis, N., Neugart, S., Robson, M., Agati, G., et al. (2015). Assessing the response of plant flavonoids to UV radiation: an overview of appropriate techniques. Phytochem. Ver, 14, 273-297. https://doi.org/10.1007/s11101-014-9362-4
Kiyohara, H., Matsumoto, T., & Yamada, H. (2004). Combination Effects of Herbs in a Multi-herbal Formula: Expression of Juzen-taiho-to’s Immuno-modulatory Activity on the Intestinal Immune System. Evid. Based Complementary Alterna. Med, 1(1), 83-91. https://doi.org/10.1093/ecam/neh004
Lan, H., Lai, B., Zhao, P., Dong, X., Wei, W., Ye, Y., & Wu, Z. (2020). Cucumber mosaic virus infection modulated the phytochemical contents of Passiflora edulis. Microb. Pathog, 138, 1-8. https://doi.org/10.1016/j.micpath.2019.103828
Lewis, D. (2019). Boron: the essential element for vascular plants that never was. New Phytol, 221(4), 1685-1690. https://doi.org10.1111/nph.15519
Li, S., & Weng, J. (2017). Demystifying traditional herbal medicine with modern approach. Nat. Plants, 3(8), 17109. https://doi.org/10.1038/nplants.2017.109
Li, Z., Jiang, H., Yan, H., Jiang, X., Ma, Y., & Qin, Y. (2021). Carbon and nitrogen metabolism under nitrogen variation affects flavonoid accumulation in the leaves of Coreopsis tinctoria. Peer J, 9, 12152. https://doi.org/10.7717/peerj.12152
Liang, D., Yousef, A. F., Wei, X., Moaaz, M., Yu, W., Yang, L., Oelmüller, R., & Chen, F. (2021). Increasing the performance of Passion fruit (Passiflora edulis) seedlings by LED light regimes. Sci. Rep, 11, 20967.https://doi.org/10.1038/s41598-021-00103-1
Liu, W., Feng, Y., Yu, S., Fan, Z., Li, X., Li, J., & Yin, H. (2021). The flavonoid biosynthesis network in plants. Int. J. Mol. Sci, 22(23), 12824. https://doi.org/10.3390/ijms222312824
Mendonça, F. S. M., Monnerat, P. H., Vieira, I. J. C., & De Carvalho, A. J. C. (2007). Flavonóides e composição mineral de folhas de maracujazeiro amarelo em função da posição da folha no ramo. Cienc. Rural, 37(6), 1634-1639. https://doi.org/10.1590/s0103-84782007000600020
Mendonça. F. M. S., Monnerat, P. H., & Curcino Vieira, I. J. (2008). Mineral Deficiency in Passiflora alata Curtis: Vitexin Bioproduction. J. Plant. Nutr. Soil Sci, 31(10), 1844-1854. http://dx.doi.org/10.1080/01904160802325552
Ming, L. C., Maia, C. L., Conceicao, D. M., Yuhara, T. Y., Mayo Marques, M. O., et al. (2012). Phytomass and flavonoid production in different organs and phenological stages of Passiflora alata Dryander. Res. J. Med. Plant, 6(45), 5695-5700. http://dx.doi.org/10.5897/JMPR12.432
Muñiz, B.C., Falcão, E. L., Bastos, C. J. A., & Barbosa da Silva, F. S. (2023). Cultivation protocol using a coir-based substrate modulates the concentration of bioactive compounds and the antioxidant activity of Passiflora alata Curtis seedlings. Ciênc. Agrotec., 47, e014922. https://doi.org/10.1590/1413-7054202347014922
Muñiz, B. C., Falcão, E. L., Bastos, C. J. A., & Barbosa da Silva, F. S. (2022). The application of coir dust modulates the production of phytochemicals in mycorrhizal Passiflora alata Curtis. Rhizosphere., 23, 100573. https://doi.org/10.1016/j.rhisph.2022.100573
Muniz, B. C., Falcão, E. L., Monteiro, R. P., dos Santos, E. L., Bastos, C. J. A., & Barbosa da Silva, F. S. (2021). Acaulospora longula España & N.C. Schenck: A low-cost bioinsumption to optimize phenolics and saponins production in Passiflora alata Curtis. Ind. Crops Prod, 167, 113498. https://doi.org/10.1016/j.indcrop.2021.113498
Murillo, E., Jiménez, A., Velásquez, A., Clavijo, H., & Velásquez, C. (2023). Phenolic Components and Antioxidant Capacity of Six Wild Passiflora Species from the Andean Region of Colombia. J. Herbs Spices Med. Plants, 29(4), 319-335. https://doi.org/10.1080/10496475.2023.2181260
Nabavi, S. M., Šamec, D., Tomczyk, M., Milella, L., Russo, D., et al. (2020). Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic. Engineering. Biotechnol. Adv, 38, 107316. https://doi.org/10.1016/j.biotechadv.2018.11.005
Ni, Y., Lin, K., Chen, K., Wu, C., & Chang, Y. (2020). Flavonoid Compounds and Photosynthesis in Passiflora Plant Leaves under Varying Light Intensities. Plants, 9(5), 633. https://doi.org/10.3390/plants9050633
Oliveira, M.S., Campos, M. A. S., & Silva, F. S. B. (2014). Arbuscular mycorrhizal fungi and vermicompost to maximize the production of foliar biomolecules in Passiflora alata Curtis seedlings. J. Sci. Food Agric, 95, 522-528. https://doi.org/10.1002/jsfa.6767
Oliveira, M. S., Pinheiro, I. O., & Silva, F. S. B. (2015). Vermicompost and arbuscular mycorrhizal fungi: An alternative to increase foliar orientin and vitexin-2-O-ramnoside synthesis in Passiflora alata curtis seedlings. Ind. Crops Prod, 77, 754-757. https://doi.org/10.1016/j.indcrop.2015.09.061
Oliveira, M. V., Oliveira, L. L., & Costa, A. M. (2018). Effect of training system and climate conditions on phytochemicals of Passiflora setacea, a wild Passiflora from Brazilian Savannah. Food Chem, 266, 350-358. https://doi.org/10.1016/j.foodchem.2018.05.097
Oliveira, P. T., Lima dos Santos, E., Viturino da Silva, W. A., Assunção Ferreira, M. R., Lira Soares, L. A., Alves da Silva, F., & Barbosa da Silva, F. S. (2019a). Use of mycorrhizal fungi releases the application of organic fertilizers to increase the production of leaf vitexin in yellow passion fruit. J. Sci. Food Agric, 100, 1816–1821. https://doi.org/10.1002/jsfa.10197
Oliveira, P. T., Lima dos Santos, E., Viturino da Silva, W. A., Assunção Ferreira, M. R., Lira Soares, L. A., Alves da Silva, F. A., & Barbosa da Silva, F. S. (2019b). Production of biomolecules of interest to the anxiolytic herbal medicine industry in yellow passionfruit leaves (Passiflora edulis f. flavicarpa) promoted by mycorrhizal inoculation. J. Sci. Food Agric, 99(7), 3716-3720. https://doi.org/10.1002/jsfa.9598
Pagassini, J. A. V., de Godoy, L. J. G., Campos, F. G., Barzotto, G. R., Ribeiro, M. A., & Gernandes, C. S. (2021). Silicon and mechanical damage increase polyphenols and vitexin in Passiflora incarnata L. Sci. Rep, 11, 22064. https://doi.org/10.1038/s41598-021-01647-y
Pang, Z., Chen, J., Wang, T., Gao, C., Li, Z., Guo, L., Xu, J., & Cheng, Y. (2021). Linking plant secondary metabolites and plant microbiomes: a review. Front in Plant Sci, 12, 621276. https://doi.org/10.3389/fpls.2021.621276
Pedone, M. V. L., Silva, F. S., & Maia, L. C. (2015). Production of secondary metabolites by mycorrhizal plants with medicinal or nutritional potential. Acta Physiol. Plant, 37, 1-12. https://doi.org/10.1007/s11738-015-1781-3
POWO. (2023). "Plants of the World Online”. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/
Rai, S., Nagar, J. C., & Mukin, M. (2022). Pharmacological and Medicinal Importance of Passiflora edulis: A Review. Int. J. Res. Rev, 9(4), 341-349. https://doi.org/10.52403/ijrr.20220442
Ramaiya, S. D., Lee, H. H., Xiao, Y., Shahbani, N. S., Zakaria, M. H., & Bujang, J. S. (2021). Organic cultivation practices enhanced antioxidant activities and secondary metabolites in giant granadilla (Passiflora quadrangularis L.). PloS one, 16(7), e0255059. https://doi.org/10.1371/journal.pone.0255059
Ranjan, R., Kishore, K., Ranjan, R., Sheikh, T. J., Kumar, A., Kumar, B., Kumar, S., & Kumar, R. (2023). Nutraceutical Potential of Vitexin: A Flavone Glycoside. J. Phytopharm, 12(1), 44-50. http://10.31254/phyto.2023.12107
Reimberg, M. C., Colombo, R., & Yariwake, J. H. (2008). Multivariate analysis of the effects of soil parameters and environmental factors on the flavonoid content of leaves of Passiflora incarnata L., Passifloraceae. Rev. Bras. Farmacogn, 19(4), 853-859. http://dx.doi.org/10.1590/S0102-695X2009000600010
Rey, D., Alves, T., Miranda, P. M., Gonçalves, R., Sepulveda, M., et al. (2020). Cellular target of isoquercetin from Passiflora ligularis Juss for glucose uptake in rat soleus muscle. Chem. Biol. Interact, 330, 109198. https://doi.org/10.1016/j.cbi.2020.109198
Rodríguez-León, A., Rodríguez-Carlosama, A., Melgarejo, L. M., & Miranda, D. (2015). Caracterización fenológica de granadilla (Passiflora ligularis Juss) crecida a diferentes altitudes en el departamento del Huila. In: Granadilla (Passiflora ligularis Juss): Caracterización ecofisiológica del cultivo. In: Chapter: Caracterización fenológica de granadilla (Passiflora ligularis Juss) crecida a diferentes altitudes en el departamento del Huila. Publisher: Universidad Nacional de Colombia, Bogotá Ed: Luz Marina Melgarejo, pp.53-90.
Sesan, T. E., Oancea, A. O., Stefan, L. M., Mănoiu, V. S., Ghiurea, M., Răut, L., et al. (2020). Effects of Foliar Treatment with a Trichoderma Plant Biostimulant Consortium on Passiflora caerulea L. Yield and Quality. Microorganisms, 8(1), 2-17. https://doi:10.3390/microorganisms8010123
Shah, A., & Smith, D.L. (2020). Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy, 10(8), 1209. https://doi.org/10.3390/agronomy10081209
Sharan, S., Soni, H., Mishra, K., & Kumar, A. (2011). Recent updates on the genus Passiflora: A review. Int. J. Res. Phytochem. Pharmacol, 1(1), 1-16.
Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem, 383, 132531. http://doi.org/10.1016/j.foodchem.2022.132531
Shraim, A.M., Ahmed, T.A., Rahman, M.M., Hijji, Y.M. (2021). Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT, 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932
Silva, F. A., Maia, L. C., & Silva, F. S. B. (2019). Arbuscular mycorrhizal fungi as biotechnology alternative to increase concentrate of secondary metabolites in Zea mays L. Rev. Bras. Bot, 42, 189-193. https://doi.org/10.1007/s40415-018-0508-2
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development. Ed. VI Sinauer Associates Incorporated.
Thomford, N. E., Senthebane, D. A., Rowe, A., Munro, D., Seele, P., Maroyi, A., & Dzobo, K. (2018). Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int. J. Mol. Sci, 19, 1578. https://doi.org/10.3390/ijms19061578
Tikhonovich, I. A., & Provorov, N. A. (2007). Beneficial plant-microbe interactions. Comprenhensive and Molecular Phytopathology, 365-420. https://doi.org/10.1016/B978-044452132-3/50018-3
Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of Plant Secondary Metabolites to Environmental Factors. Molecules, 23, 1-26. https://doi:10.3390/molecules23040762
Zhang, J., Tao, S., Hou, G., Zhao, F., Meng, Q., & Tan, S. (2023). Phytochemistry, nutritional composition, health benefits and future prospects of Passiflora: A review. Food Chem., 428, 136825. https://doi.org/10.1016/j.foodchem.2023.136825
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Scientia Agropecuaria
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).