Effect of liming and fertilizers on the growth and nutrition of 12-month old Teak (Tectona grandis L.) grown on acidic soil of Peru
DOI:
https://doi.org/10.17268/sci.agropecu.2023.016Palabras clave:
Organic fertilizers, Forestry nutrition, forest plantations, ultisols, soil fertilityResumen
Peru has a great potential for forestry plantations, nevertheless, importations of this type of products are getting very expensive. Soils under forest are acidic and infertile to support sustainable economically valuable forest tree species such as teak. Information is lacking on proper fertility management in forest plantations such as teak. Therefore, the objective of this study was to explore the effect of lime, and organic and inorganic fertilizers on the early growth and nutrient composition of 12-month old teak grown on acidic soil of Peru. The soil under field study was acidic with a pH of 4.99, low in fertility. A factorial design of 2x3: Lime (No Lime and Liming) and fertilizer (organic, inorganic and mixture), with 9 repetitions was adopted. Tree biometric parameters (height, diameter, biomass) and N, P, K, Ca, Mg, Fe, Cu, Mn, Zn foliar concentrations were determined during early the growth of teak. Treatments with addition of dolomite lime favored higher biometric parameters, and use of organic fertilizers promoted more growth than inorganic fertilizers. In the case of nutrients, no major differences were observed between limed and unlimed treatments while organic fertilizer promoted Ca, K and S nutrition. The results show that the application of lime and organic fertilizers is essential for the successful management and establishment of teak plants in acidic soils of Peru.
Citas
Abod, S., & Siddiqui, M. (2001). Fertilizer Requirements of Newly Planted Teak (Tectona grandis L.f.) Seedlings. Pertanika J. Trop. Agric. Sci., 25(2), 121-129.
Abreu-Junior, C. H., Firme, L. P., Maldonado, C. A. B., de Moraes Neto, S. P., Alves, M.C., et al. (2017). Fertilization using sewage sludge in unfertile tropical soils increased wood production in Eucalyptus plantations. J. Environ. Manage., 203, 51-58. https://doi.org/10.1016/J.JENVMAN.2017.07.074
Alberto, M., Cornejo, V., Mostajo, G. E., Willian, R., Arteaga, A., et al. (2019). República del Perú Servicio Nacional Forestal Y De Fauna Silvestre-Serfor.
Anderson, J. M., & Ingram, J. S. I. (1993). Tropical Soil Biology and Fertility: A Handbook of Methods. The Journal of Ecology, 78, 2, 547-548. https://doi.org/10.2307/2261129
Arévalo-Hernández, C. O., Arévalo-Gardini, E., Farfan, A., Amaringo-Gomez, M., Daymond, A., Zhang, D., Baligar, V. C. (2022). Growth and Nutritional Responses of Juvenile Wild and Domesticated Cacao Genotypes to Soil Acidity. Agronomy, 12, 3124. https://doi.org/10.3390/AGRONOMY12123124/S1
Barry, K. M., Janos, D. P., Nichols, S., & Bowman, D. M. J. S. (2015). Eucalyptus obliqua seedling growth in organic vs. mineral soil horizons. Front. Plant Sci. 6, 97. https://doi.org/10.3389/FPLS.2015.00097/ABSTRACT
Behling, M., Neves, J. C. L., de Barros, N. F., Kishimoto, C. B., & Smit, L. (2014). Eficiência de utilização de nutrientes para formação de raízes finas e médias em povoamento de teca. Rev. Árvore, 38(5), 837-846. https://doi.org/10.1590/S0100-67622014000500008
Bolan, N. S., Adriano, D. C., & Curtin, D. (2003). Soil acidification and liming interactions with nutrientand heavy metal transformationand bioavailability. Advances in Agronomy, 78, 215-272. https://doi.org/10.1016/S0065-2113(02)78006-1
Børja, I., & Nilsen, P. (2009). Long term effect of liming and fertilization on ectomycorrhizal colonization and tree growth in old Scots pine (Pinus sylvestris L.) stands. Plant Soil, 314, 109-119. https://doi.org/10.1007/S11104-008-9710-5/TABLES/6
Cavalcante, V. S., Dos Santos, M. L., Cotta, L. C., Neves, J. C. L., & Soares, E. M. B. (2021). Clonal teak litter in tropical soil: Decomposition, nutrient cycling, and biochemical composition. Rev. Bras. Cienc. do Solo, 45, 1-18. https://doi.org/10.36783/18069657rbcs20200071
Cellier, A., Gauquelin, T., Baldy, V., & Ballini, C. (2014). Effect of organic amendment on soil fertility and plant nutrients in a post-fire Mediterranean ecosystem. Plant Soil, 376, 211-228. https://doi.org/10.1007/S11104-013-1969-5/TABLES/5
Combatt, E., Mercado, J., & Pérez Polo, D. (2016). Liming and Boron in a Teak Crop Established during Early Stages in an Acid Soil. Commun. Soil Sci. Plant Anal., 47(20), 2281-2291. https://doi.org/10.1080/00103624.2016.1243707
da Favare, L. G., Guerrini, I. A., & Backes, C. (2012). Níveis crescentes de saturação por bases e desenvolvimento inicial de teca em um latossolo de textura média. Cienc. Florest., 22(4), 693-702. https://doi.org/10.5902/198050987551
da Silva, R. S., Vendruscolo, D. G. S., da Rocha, J. R. M., Chaves, A. G. S., Souza, H. S., & da Motta, A. S. (2016). Desempenho Silvicultural de Tectona grandis L. f. em Diferentes Espaçamentos em Cáceres, MT. Floresta e Ambient., 23, 397-405. https://doi.org/10.1590/2179-8087.143015
de Farias, J., Marimon, B. S., de Carvalho, L., Petter, F. A., Andrade, F. R., Morandi, P. S., & Marimon-Junior, B. H. (2016). Survival and growth of native Tachigali vulgaris and exotic Eucalyptus urophylla × Eucalyptus grandis trees in degraded soils with biochar amendment in southern Amazonia. For. Ecol. Manage., 368, 173-182. https://doi.org/10.1016/J.FORECO.2016.03.022
Diacono, M., & Montemurro, F. (2010). Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev., 30, 401–422. https://doi.org/10.1051/agro/2009040
Dos Santos, M. L., Leite, H. G., Cavalcante, V. S., Fernandes, L. V., & Neves, J. C. L. (2022). Allometric equations for biomass and contents of macronutrients in a young Tectona grandis stand. Rev. Bras. Cienc. do Solo, 46, e0220030. https://doi.org/10.36783/18069657RBCS20220030
Eden, M., Gerke, H. H., & Houot, S., (2017). Organic waste recycling in agriculture and related effects on soil water retention and plant available water: a review. Agron. Sustain. Dev., 37, 1-21. https://doi.org/10.1007/S13593-017-0419-9/FIGURES/10
EMBRAPA. (2009). Manual de análises químicas de solos, plantas e fertilizantes, 2nd ed. Embrapa, Brasília, DF.
Fernández-Moya, J., Alvarado, A., Fallas, J. L., Miguel-Ayanz, A. S., Marchamalo-Sacristán, M. (2017). N-p-k fertilisation of teak (Tectona grandis) plantations: A case study in Costa Rica. J. Trop. For. Sci., 29, 417-427. https://doi.org/10.26525/jtfs2017.29.4.417427
Fernández-Moya, J., Alvarado, A., Miguel-Ayanz, A. S., & Marchamalo-Sacristán, M. (2014). Forest nutrition and fertilization in teak (Tectona grandis L.f.) plantations in Central America. New Zeal. J. For. Sci., 44, Article number: S6. https://doi.org/10.1186/1179-5395-44-S1-S6
Gonçalves, W., Alvarez, H., César, J., Neves, L., Paulucio, R. B. (2020). Evaluation of traditional methods for estimating lime requirement in Brazilian soils. Rev. Bras. Ciênc. Solo, 44, e0200078. https://doi.org/10.36783/18069657rbcs20200078
Guariguata, M. R., Arce, J., Ammour, T., Capella, J. L. (2017). Las plantaciones forestales en Perú. Center for International Forestry Research. https://doi.org/10.17528/cifor/006461
Han, S. H., An, J. Y., Hwang, J., Kim, S. Bin, & Park, B. B. (2016). The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar (Liriodendron tulipifera Lin.) in a nursery system. Forest Science and Technology, 12(3), 137-143. https://doi.org/10.1080/21580103.2015.1135827
Laclau, J. P., Levillain, J., Deleporte, P., Nzila, J. de D., Bouillet, J. P., et al. (2010). Organic residue mass at planting is an excellent predictor of tree growth in Eucalyptus plantations established on a sandy tropical soil. For. Ecol. Manage., 260, 2148-2159. https://doi.org/10.1016/j.foreco.2010.09.007
Lapaz, A. de M., Yoshida, C. H. P., Gorni, P.H., de Freitas-Silva, L., Araújo, T. de O., Ribeiro, C. (2022). Iron toxicity: effects on the plants and detoxification strategies. Acta Bot. Brasilica, 36. https://doi.org/10.1590/0102-33062021ABB0131
Lin, S., Wang, W., Peñuelas, J., Sardans, J., Fernández-Martínez, M., et al. (2022). Combined slag and biochar amendments to subtropical paddy soils lead to a short-term change of bacteria community structure and rise of soil organic carbon. Appl. Soil Ecol., 179, 104593. https://doi.org/10.1016/J.APSOIL.2022.104593
Machado, A., Serpa, D., Santos, A. K., Gomes, A. P., Keizer, J. J., & Oliveira, B. R. F. (2022). Effects of different amendments on the quality of burnt eucalypt forest soils - A strategy for ecosystem rehabilitation. J. Environ. Manage., 320, 115766. https://doi.org/10.1016/J.JENVMAN.2022.115766
Marschner, P. (2011). Marschner’s Mineral Nutrition of Higher Plants: 3th Edition, Marschner’s Mineral Nutrition of Higher Plants: 3th Edition. https://doi.org/10.1016/C2009-0-63043-9
Mendiola, A., Aguirre, C., Dávila, J., Fernández, M., & Vittor, P. (2016). Estructuración económica y financiera de un instrumento de participación en negocios forestales: el caso de la teca en la región San Martín. Serie Gerencia para el desarrollo, 58. ESAN Ediciones. Lima.
MINAM, & MINAGRI. (2011). El Perú de los bosques, 1st ed. MINAM y MINAGRI, Lima.
Naramabuye, F. X., & Haynes, R. J. (2006). Effect of organic amendments on soil pH and Al solubility and use of laboratory indices to predict their liming effect. Soil Sci., 171(10), 754-763, https://doi.org/10.1097/01.ss.0000228366.17459.19
Neto, A. A. L. M., Farias, P. R. S., de Matos, G. S. B., da Silva, G. B., Dos Santos, A. V. F., & Anhê, B. B. (2020). Diagnosis and spatial variability of soil fertility and crop production in a teak area in Eastern Pará State. CERNE, 26(1), 37-47. https://doi.org/10.1590/01047760202026012683
Palviainen, M., Aaltonen, H., Laurén, A., Köster, K., Berninger, F., Ojala, A., & Pumpanen, J. (2020). Biochar amendment increases tree growth in nutrient-poor, young Scots pine stands in Finland. For. Ecol. Manage., 474, 118362. https://doi.org/10.1016/j.foreco.2020.118362
R Core Team (2021). R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. URL http//www.R-project.org/.
Rengel, Z. (2003). Handbook of Soil Acidity, Handbook of Soil Acidity. CRC Press. https://doi.org/10.1201/9780203912317
Rosa, A., Pereira, N., Damaceno, F. M., & Júnior, L. A. Z. (2022). Pig slurry improves the productive performance of eucalypt and exceeds the mineral fertilization. Rev. Árvore, 46, e4624. https://doi.org/10.1590/1806-908820220000024
Salcedo-Pérez, E., Ruiz, B. A., Hernández, E., González, R., Bernabé-Antonio, A., et al. (2019). Soil properties and nitrogen as indicators of growth in teak commercial stands. Rev. Mex. ciencias For., 10, 33-54. https://doi.org/10.29298/RMCF.V10I52.398
Sandro, A.H.A., Everton, M. A., Leonardo, R. B., Risely, F. de A., Deyvid, D. C. M., et al. (2016). Chemical attributes of the soil in agroforestry systems subjected to organic fertilizations. African J. Agric. Res., 11, 2378-2388. https://doi.org/10.5897/ajar2016.11182
Shukla, S. R., & Viswanath, S. (2023). Comparison of growth and few wood quality parameters of 24-25-year-old Tectona grandis (teak) trees raised under three agroforestry practices. Agrofor. Syst., 97, 631-645. https://doi.org/10.1007/S10457-023-00815-5/TABLES/5
Siddiqui, M. T., Shah, A. H., & Yaqoob, S. (2009). Chronosequence and crown strata effects on foliar nutrient concentrations in teak (Tectona grandis L.f) plantations. Pakistan J. Bot.
Silva, D. A. S., Viégas, I. de J. M., Okumura, R. S., da Silva Júnior, M. L., Viégas, S. de F. S., et al. (2015). Use of multi-dimensional scaling for analysis of teak plants (Tectona grandis) under omission of macronutrients. Aust. J. Crop Sci., 9(5), 355-362.
Smitha, J. K., Sujatha, M. P., & Sureshkumar, P. (2016). Availability and uptake of P from organic and in organic sources of P in teak (Tectona grandis) using radio tracer technique. African J. Agric. Res., 11, 1033-1039. https://doi.org/10.5897/ajar2014.9001
Wehr, J. B., Blamey, F. P. C., Smith, T. E., & Menzies, N. W. (2017). Growth and physiological responses of teak (Tectona grandis Linn. f.) clones to Ca, H and Al stresses in solution and acid soils. New For., 48, 137–152. https://doi.org/10.1007/s11056-016-9560-6
Yi, X., Ji, L., Hu, Z., Yang, X., Li, H., et al. (2022). Organic amendments improved soil quality and reduced ecological risks of heavy metals in a long-term tea plantation field trial on an Alfisol. Sci. Total Environ., 838, 156017. https://doi.org/10.1016/J.SCITOTENV.2022.156017
Zhang, Q., Zhou, Z., Zhao, W., Huang, G., et al. (2023). Effect of Slope Position on Leaf and Fine Root C, N and P Stoichiometry and Rhizosphere Soil Properties in Tectona grandis Plantations. J. For. Res., 1, 1-13. https://doi.org/10.1007/S11676-022-01582-2
Zhou, Z., Liang, K., Xu, D., Zhang, Y., Huang, G., & Ma, H. (2012). Effects of calcium, boron and nitrogen fertilization on the growth of teak (Tectona grandis) seedlings and chemical property of acidic soil substrate. New For., 43, 231–243. https://doi.org/10.1007/s11056-011-9276-6.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Scientia Agropecuaria
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).