Las Redes neuronales convolucionales ResNet-50 para la detección de gorgojo en granos de maíz
DOI:
https://doi.org/10.17268/sci.agropecu.2023.034Palabras clave:
Gorgojo, maíz, redes neuronales convolucionales, EcuadorResumen
El artículo explora el uso de redes neuronales convolucionales, específicamente ResNet-50, para detectar gorgojos en granos de maíz. Los gorgojos son una plaga importante en el maíz almacenado y pueden causar pérdidas significativas en rendimiento y calidad. El estudio encontró que el modelo ResNet-50 fue capaz de distinguir con alta precisión entre granos de maíz infestados por gorgojos y granos sanos, logrando valores de 0.9464 para precisión, 0.9310 para sensibilidad, 0.9630 para especificidad, 0.9469 para el índice de calidad, 0.9470 para el área bajo la curva (AUC) y 0.9474 para el F-score. El modelo fue capaz de reconocer nueve de cada diez granos de maíz libres de gorgojos utilizando un número mínimo de muestras de entrenamiento. Estos resultados demuestran la eficacia del modelo en la detección precisa de la infestación por gorgojos en los granos de maíz. La capacidad del modelo para identificar con precisión los granos afectados por gorgojos es crucial para tomar medidas rápidas y controlar la propagación de la plaga, lo que puede prevenir pérdidas económicas considerables y preservar la calidad del maíz almacenado. La investigación sugiere que el uso de ResNet-50, ofrece una solución eficiente y de bajo costo para la detección temprana de la infestación por gorgojos en los granos de maíz. Estos modelos pueden procesar rápidamente grandes cantidades de datos de imágenes y realizar análisis precisos, lo que facilita la identificación de granos afectados.
Citas
Abiyev, R. H., & Maaitah, M. K. S. (2018). Deep Convolutional Neural Networks for Chest Diseases Detection. Journal of Healthcare Engineering, 2018. doi:10.1155/2018/4168538.
Aladhadh, S., Habib, S., Islam, M., Aloraini, M., Aladhadh, M., & Al-Rawashdeh, H. S. (2022). An Efficient Pest Detection Framework with a Medium-Scale Benchmark to Increase the Agricultural Productivity. Sensors, 22(24), 9749. doi:10.3390/s22249749.
Alchetron (2022). Maize weevil. https://alchetron.com/Maize-weevil.
Altuntaş, Y., Cömert, Z., & Kocamaz, A. F. (2019). Identification of haploid and diploid maize seeds using convolutional neural networks and a transfer learning approach. Computers and Electronics in Agriculture, 163, 104874. doi:10.1016/j.compag.2019.104874.
An, J., Li, W., Li, M., Cui, S., & Yue, H. (2019). Identification and classification of maize drought stress using deep convolutional neural network. Symmetry, 11(2), 256. doi:10.3390/sym11020256.
Baoua, I. B., Amadou, L., Ousmane, B., Baributsa, D., & Murdock, L. L. (2014). PICS bags for post-harvest storage of maize grain in West Africa. Journal of Stored Products Research, 58, 20–28. doi:10.1016/j.jspr.2014.03.001.
Basir, M. S., Chowdhury, M., Islam, M. D., & Ashik-E-Rabbani, M. (2021). Artificial neural network model in predicting yield of mechanically transplanted rice from transplanting parameters in Bangladesh. Journal of Agriculture and Food Research, 5, 100186. doi:10.1016/j.jafr.2021.100186.
Bisong, E. (2019). Building Machine Learning and Deep Learning Models on Google Cloud Platform. 1st edn, Building Machine Learning and Deep Learning Models on Google Cloud Platform. 1st edn. Ottawa: Apress. doi:10.1007/978-1-4842-4470-8.
Bohinc, T., Horvat, A., Andrić, G., Pražić Golić, M., Kljajić, P., & Trdan, S. (2020). Natural versus synthetic zeolites for controlling the maize weevil (Sitophilus zeamais)–like Messi versus Ronaldo? Journal of Stored Products Research, 88, 101639.
Camardo, M., Mazzoni, M., & Battilani, P. (2021). Machine Learning for Predicting Mycotoxin Occurrence in Maize. Frontiers in Microbiology, 12, 1–10. doi:10.3389/fmicb.2021.661132.
Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., Traore, D. (2022). Explainable deep convolutional neural networks for insect pest recognition. Journal of Cleaner Production, 371, 133638. doi:10.1016/j.jclepro.2022.133638.
da Silva, C. B., Silva, A. A. N., Barroso, G., Yamamoto, P. T., Arthur, V., Toledo, C. F. M., & Mastrangelo, T. de A. (2021). Convolutional neural networks using enhanced radiographs for real-time detection of Sitophilus zeamais in maize grain. Foods, 10(4), 879. doi:10.3390/foods10040879.
de Carvalho, M. L., Rezende Leite, E., Carvalho, G. A., França-Silva, F., Bernardes de Andrade, D., & Marques, E. R. (2019). The Compared Efficiency of the Traditional Method, Radiography without Contrast and Radiography with Contrast in the Determination of Infestation by Weevil (Sitophilus zeamais) in Maize Seeds. Insects, 10(6), 156.
FAO (2017). El futuro de la alimentación y la agricultura: Tendencias y desafíos. Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.fao.org/3/i6881s/i6881s.pdf
Fan, J., Zheng, J., Wu, L., & Zhang, F. (2021). Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models. Agricultural Water Management, 245, 106547. doi:10.1016/j.agwat.2020.106547.
Goodfellow, I., Bengio, Y., & Courville, A. (2017) Deep Learning, The MIT Press. Londres: MIT Press. doi:10.1017/CBO9781107415324.004.
Ileke, K. D., Idoko, J. E., Ojo, D. O., & Adesina, B. C. (2020). Evaluation of botanical powders and extracts from Nigerian plants as protectants of maize grains against maize weevil, Sitophilus zeamais (Motschulsky) [Coleoptera: Curculionidae]. Biocatal. Agric. Biotechnol., 27, 101702.
Javanmardi, S., Miraei Ashtiani, S.-H., Verbeek, F. J., & Martynenko, A. (2021). Computer-vision classification of corn seed varieties using deep convolutional neural network’, Journal of Stored Products Research., 92, 101800. doi:10.1016/j.jspr.2021.101800.
Kamilaris, A., & Prenafeta, F. X. (2018). A review of the use of convolutional neural networks in agriculture. Journal of Agricultural Science, 156(3), 312–322. doi:10.1017/S0021859618000436.
Kienbaum, L., Correa Abondano, M., Blas, R., & Schmid, K. (2021). DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics. Plant Methods, 17, 91. doi:10.1186/s13007-021-00787-6.
Li, L., Lv, Ch., Yuan, Y., & Zhao, B. (2021). Maize residue segmentation using Siamese domain transfer network. Computers and Electronics in Agriculture, 187, 106261. doi:10.1016/j.compag.2021.106261.
Mamoon-ur-Rashid, M., Riaz-ud-din, Tariq, M., Khan, A. A., Latif, A., Naeem, M., & Khan, I. (2021). Bioactivity of hexane plant extracts against maize weevil (Sitophilus zeamais Motschulsky) (Coleoptera: Curculionidae) on stored maize. Intl J Agric Biol, 26, 617‒624.
Mi, C., Zhao, Ch., Deng, Q., & Deng, X. (2021). Prediction of chilling damage risk in maize growth period based on probabilistic neural network approach. International Journal of Agricultural and Biological Engineering, 14(2), 120–125. doi:10.25165/J.IJABE.20211402.5732.
Michelucci, U. (2018). Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks. Dübendorf, Switzerland. doi:https://doi.org/10.1007/978-1-4842-3790-8.
Ministerio de Agricultura y Ganadería, (MAG) (2019). Ficha del cultivo de Maíz duro seco (Zea mays L.). Quito-Ecuador, p. 1. http://sipa.agricultura.gob.ec/index.php/cifras-agroproductivas.
Muhaisin, M. M., & Rahman, T. (2019). Application of Game Theory for Big Data Analytics, Data Analytics. doi:10.1201/9780429446177-8.
Ni, C., Wang, D., Vinson, R., Holmes, M., & Tao, Y. (2019). Automatic inspection machine for maize kernels based on deep convolutional neural networks. Biosystems Engineering, 178, 131–144. doi:10.1016/j.biosystemseng.2018.11.010.
Ngom, D., Fauconnier, M. L., Malumba, P., Thiaw, C., Brévault, T., & Sembène, M. (2021). Morphophysical and biochemical traits involved in maize grain varietal susceptibility to the maize weevil, Sitophilus zeamais (Coleoptera, Curculionidae). Biotechnologie, Agronomie, Société et Environnement, 25(1), 45-56.
Nurma Yulita, I., Hidayat, A., Setiawan Abdullah, A., & Paulus, E. (2020). Combining Fuzzy Clustering and Hidden Markov Models for Sundanese Speech Recognition. Journal of Physics: Conference Series, 1028, 012239.
Nyéki, A., Kerepesi, C., Daróczy, B., Benczúr, A., Milics, G., Nagy, J., Harsányi, E., Kovács, A. J., & Neményi, M. (2021). Application of spatio-temporal data in site-specific maize yield prediction with machine learning methods. Precision Agriculture, 22(5), 1397–1415. doi:10.1007/s11119-021-09833-8.
Pashaei, M., Kamangir, H., Starek, M. J., & Tissot, P. (2020). Review and evaluation of deep learning architectures for efficient land cover mapping with UAS hyper-spatial imagery: A case study over a wetland. Remote Sensing, 12(6), 959. doi:10.3390/rs12060959.
Peschiutta, M. L., Brito, V. D., Achimón, F., Zunino, M. P., Usseglio, V. L., & Zygadlo, J. A. (2019). New insecticide delivery method for the control of Sitophilus zeamais in stored maize. Journal of Stored Products Research, 83, 185-190.
Rau, T. S., Bern, C. J., Brumm, T. J., Barnes, R. B., Bbosa, D., & Maier, D. E. (2021). Evaluation of stirring to suppress weevils in stored maize. Journal of Stored Products Research, 93, 101849.
Rimal, K., Shah, K. B., & Jha, A. K. (2023). Advanced multi-class deep learning convolution neural network approach for insect pest classification using TensorFlow. International Journal of Environmental Science and Technology, 20(4), 4003–4016. doi:10.1007/s13762-022-04277-7.
Sibiya, M., & Sumbwanyambe, M. (2019). A Computational Procedure for the Recognition and Classification of Maize Leaf Diseases Out of Healthy Leaves Using Convolutional Neural Networks. AgriEngineering, 1(1), 119–131. doi:10.3390/agriengineering1010009.
Sibiya, M., & Sumbwanyambe, M. (2021). Automatic fuzzy logic-based maize common rust disease severity predictions with thresholding and deep learning. Pathogens, 10(2), 131. doi:10.3390/pathogens10020131.
Stathers, T. E., Arnold, S. E. J., Rumney, C. J., & Hopson, C., (2020). Measuring the nutritional cost of insect infestation of stored maize and cowpea, Food Security: The Science, Sociology and Economics of Food Production and Access to Food, 12(2), 285-308.
Stuhl, Ch. J. (2019). Does prior feeding behavior by previous generations of the maize weevil (Coleoptera: Curculionidae) determine future descendants feeding preference and ovipositional suitability? Florida Entomologist, 102(2), 366-372.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929-1958.
Waheed, A., Goyal, M., Gupta, D., Khanna, A., Ella Hassanien, A., & Mohan Pandey, H. (2020). An optimized dense convolutional neural network model for disease recognition and classification in corn leaf. Computers and Electronics in Agriculture, 175, 105456. doi:10.1016/j.compag.2020.105456.
Wang, G., Sun, Y., & Wang, J. (2017). Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning. Computational Intelligence and Neuroscience, 2917536. doi:10.1155/2017/2917536.
White, T. (2018) Hadoop. The definitive guide. Storage and analysis at internet scale. 4th Editio. Edited by Oreilly. Sebastopol-USA. http://oreilly.com/catalog/errata.csp?isbn=9781491901632.
Xia, D., Chen, P., Wang, B., Zhang, J., & Xie, Ch. (2018). Insect detection and classification based on an improved convolutional neural network. Sensors (Switzerland), 18(12), 4169. doi:10.3390/s18124169.
Xu, Y., Zhao, B., Zhai, Y., Chen, Q., & Zhou, Y. (2021). Maize Diseases Identification Method Based on Multi-Scale Convolutional Global Pooling Neural Network. IEEE Access, 9, 27959–27970. doi:10.1109/ACCESS.2021.3058267.
Yang, W., Nigon, T., Hao, Z., Dias Paiao, G., Fernández, F. G., Mulla, D., & Yang, C. (2021). Estimation of corn yield based on hyperspectral imagery and convolutional neural network. Computers and Electronics in Agriculture, 184, 106092 doi:10.1016/j.compag.2021.106092.
Zhang, J., Ma, Q., Cui, X., Guo, H., Wang, K., & Zhu, D. (2020). High-throughput corn ear screening method based on two-pathway convolutional neural network. Computers and Electronics in Agriculture, 175, 105525. doi:10.1016/j.compag.2020.105525.
Zhang, X., Qiao, Y., Meng, F., Fan, C., & Zhang, M. (2018). Identification of maize leaf diseases using improved deep convolutional neural networks. IEEE Access, 6, 30370–30377. doi:10.1109/ACCESS.2018.2844405.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Scientia Agropecuaria
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).