Evaluación nutricional y funcional de 17 accesiones de quinua (Chenopodium quinoa Willd) cultivadas en la zona andina del Perú
DOI:
https://doi.org/10.17268/sci.agropecu.2021.002Palabras clave:
quinua, accesiones, nutricional, funcional, zona de cultivoResumen
El objetivo fue evaluar la composición nutricional y el potencial funcional en accesiones de quinua provenientes de la sierra del Cuzco y sembradas en Huancayo. Se evaluaron 17 accesiones provenientes de Huancayo, 7 de bajo contenido de saponinas (< 0,11) y 10 de contenido alto. El resultado promedio de humedad, proteínas, grasa, cenizas, fibra bruta y carbohidratos fue 9,79% ± 0,01, 17,27% ± 0,02 6,76% ± 0,01, 2,10% ± 0,05, 3,07% ± 0,04 y 70,81% ± 0,11 respectivamente. La digestibilidad in vitro de almidones y proteína fue 32,23% ± 0,008 y 83,6% ± 0,002 respectivamente. La fibra dietaria total fue 7,44% ± 1,86. En las accesiones de quinua del Cuzco, los resultados de humedad, proteínas, grasa, ceniza, fibra bruta y carbohidratos fueron 11,29% ± 0,02, 16,46% ± 0,04, 7,67% ± 0,01, 1,97% ± 0,01, 2,52% ± 0,01 y 71,38% ± 0,04 respectivamente. La digestibilidad in vitro de almidón y proteínas fue 72,52% ± 0,001 y 83,53% ± 0,007 respectivamente. La fibra dietaria total fue 7,02% ± 1,57. Entre las accesiones de quinua de Huancayo y sus correspondientes originales del Cuzco, el contenido de proteínas, fibra cruda, carbohidratos y fibra dietaria total, compuestos fenólicos y digestibilidad in vitro de proteínas no se encontraron diferencias significativas (p ˃ 0,05).
Citas
AOAC. Association of Official and Analytical Chemists. (2000). Official Methods of Analysis. Editorial Board. USA.
Argüello, S., & Garzón, G. (2012). Efecto de la temperatura y el tiempo de remojo en la germinación de maíz morado (Zea mays), quinua (Chenopodium quinoa) y amaranto (Amaranthus hypochondriacus) para incrementar su valor proteico. [Tesis Ing. Agroindustrial.] Guaranda, Ecuador. Universidad Estatal de Bolívar. 129 pp.
Baccou, J., Lambert, F., & Sauvaire, Y. (1977). Spectrophotometric. Method for the determination of total steroidal sapogenin. Analys 102:458 - 465.
Bhargava, A.; Shukla, S., & Ohri, D. (2006). Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Research 101, 104–116.
Cerón, C.; Guerra, L.; Legarda, J.; Enríquez, M., & Pismag, Y. (2016). Efecto de la Extrusión sobre las Características Físico-Químicas de Harina de Quinua (Chenopodium quinoa Willd). Biotecnología en el Sector Agropecuario y Agroindustrial, 2, 92-99.
Chaparro, D., Pismag, R., Correa, E., Vivas, N., & Erazo, C. (2010). Efecto de la germinación sobre el contenido y digestibilidad de proteína en semillas de amaranto, quinua, guandul y soya. Biotecnología en el Sector Agropecuario y Agroindustrial, 9(1), 51-59.
Escudero, O., Gonzáles, I., Wells, G., Fischer, S., & Hernández, J. (2014). Amino acid profile of the quinoa (Chenopodium quinoa Willd) using near infrared spectroscopy and chemometric techniques. Journal of Cereal Science (Article in Press), 1-8.
García, A., Villanueva, M., Vela, A., & Ronda, F. Protein and lipid enrichment of quinoa (cv. Tticaca) by dry fractionation. Techno-funtional, thermal and rheological properties of milling fractions. Food Hydrocolloids. 105-105770.
Hirose, Y.; Fujita, T.; Ueno, N. (2010). Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chemistry, 119, 1300-1306.
Holm, J.; Björck, I.; Asp, N.G.; Sjöberg, L.B., & Lundquist, I. (1985). Starch availability in vitro and in vivo after flaking, steam-cooking and popping of wheat. Journal of Cereal Sciences, 3, 193-206.
IICA Instituto Interamericano de Cooperación para la Agricultura. (2015). El mercado y la producción de quinua en el Perú. 172p. Lima, Perú.
INACAL Instituto Nacional de Calidad - Perú. 2014. NTP 205.062:2014. Granos Andinos. Quinua. Requisitos. 2 (ed). Lima. Perú. 28 dic 2014. 15 pp.
INEN Instituto Ecuatoriano de Normalización. (2013). NTE INEN 1672:2013. Quinua. Determinación del Contenido de saponinas por medio del método espumoso (Método de rutina). Primera edición. Quito-Ecuador. 3p.
Koyro, H.W., & Eisa, S.S. (2008). Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plan and Soil, 302, 79-90.
Koziol, M. (1992). Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis, 5, 35-68.
Lalaleo, L., Hidalgo, D., Valle, M., Calero-Caceres, W., Lamuela-Raventós, R., & Becerra-Martinez, E. (2020). Differentiating, evaluating, and classifying three quinoa ecotypes by washing, cooking and germination treatments, using 1H NMR-based metabolomic approach. Food Chemistry, 331, 127351.
Li, G., Wang, S., & Zhu, F. (2015). Physicochemical properties of quinoa starch. Carbohydrate Polymers, 137(10), 328-338.
López-Marquéz, R., Norrevang, A., Ache, P., Moog, M., Visintainer, D., Wendt, T., Osterberg, J., Dockter, C., Jorfensen, M., Torres Salvador, A., Hedrich, R., Gao, C., Jacobsen, S., Shabala, S., & Palmgren, M. (2020). Prospects for the accelerated improvement of the resilient crop quinoa. Journal of Experimental Botany, 71, 5333-5347.
Lovern, J.A. (1965). Some analytical problems in the analysis of fish and fish products. Journal of the A.O.A.C., 48, 60-68.
Martínez, R.D., Cerrudo, A., Andrade, F., Cirilo, A., Monzón, J.P., & Izquierdo, N. (2013). Effect of temperature during grain filling on the amylose/starch ratio in maize hybrids with different grain hardness. ASA, CSSA, and SSSA International Annual Meetings. Florida, Estados Unidos.
Miranda, M., Vega-Gálvez, A., Uribe, E., López, J., Martínez, E., Rodríguez, M.J., Quispe, I., & Di Scalac, K. (2011). Physico-chemical analysis, antioxidant capacity and vitamins of six ecotypes of chilean quinoa (Chenopodium quinoa Willd). Procedia Food Science, 1, 1439-1446.
Miranda, M., Vega-Gálvez, A., Martínez, E., López, J., Marín, R., Aranda, M., & Fuentes, F. (2013). Influence of contrasting environments on seed composition of two quinoa genotypes: nutritional and functional properties. Chilean Journal of Agricultural Research, 73(2), 108-116.
Mudgil P., Omar L., Kamal H., Kilari B., & Maqsood, S. (2019). LWT - Food Science and Technology, 110, 207–213.
Mujica, A., Ortiz, R., Bonifacio, A., Saravia, R., Corredor, G., Romero, A., & Jacobsen, S. (2006). Agroindustria de la Quinua (Chenopodium quinoa Willd,) en los Países Andinos. Proyecto Quinua: Cultivo Multipropósito para los Países Andinos INT/01/K01 Perú-Colombia-Bolivia. Editorial El Altiplano EIRL, Perú.
Navia-Coarite, N., Nina-Mollisaca, G., Mena-Gallardo, E., & Salcedo-Ortiz, L. (2019). Hidrólisis enzimática en harina de quinua y tarwi por efecto de α-amilasa. Biotecnología en el sector agropecuario y agroindustrial, 17, 64-73.
Nowak, V., Du, J., & Charrondiére, U.R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd). Food Chemistry, 193, 47-54.
Pereira, E., Cadavez, V., Barros, L., Encina-Zelada, C., Stojkovic, D., Sokovic, M., Calhelha, R., Gonzales-Barron, U., & Ferreira, I. (2020). Chenopodium quinoa Willd. (quinoa) grains: A good source phenolic compounds. Food Research International, 137, 109574.
Pereira, E., Encina-Zelada C., Barros L., Gonzales-Barron U., Cadavez V., & Ferreira I. (2019). Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chemistry, 280, 110-114.
Repo-Carrasco, R., Espinoza, C., & Jacobsen, S. (2003). Nutritional value and use of the andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Reviews International, 19(1-2), 179-189.
Repo de Carrasco, R., & Encina, C.R. (2008). Determinación de la capacidad antioxidante y compuestos fenólicos de cereales andinos: quinua (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) y kiwicha (Amaranthus caudatus). Revista de la Sociedad Química del Perú, 74(2), 85-99.
Repo-Carrasco, R., Hellstrom, J., Pihlava, J., & Marrila, P. (2010). Flavonoids and other phenolic compounds in andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120, 128-133.
Repo-Carrasco, R., & Serna, L. (2011). Quinoa (Chenopodium quinoa Willd,) as a source of dietary fiber and other functional components. Ciênc. Tecnol. Aliment. Campinas, 31(1), 225-230.
Ruales, J., & Nair, B. (1993). Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa, Willd) seeds. Food Chemistry, 48, 131.136.
Ruales, J., & Nair, B. (1994). Properties of starch and dietary fibre in raw and processed quinoa (Chenopodium quinoa Willd.) seeds. Plant Foods Human Nutr., 45, 223-246.
Sobota, A., Świeca, M., Gęsiński, K., Wirkijowska, A., & Bochnak, J. (2020). Yellow - coated quinoa (Chenopodium quinoa Willd) – physicochemical, nutritional, and antioxidant properties. Journal of the Science of Food and Agriculture, 100, 2035-2042.
Singleton, V., & Rossi, J. (1965). Colorimetry of total phenolics with phosphotungstic acid reagents. American Journal of Enology Viticulture, 16, 2349-2351.
Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci., 16, 24673-24706.
Valdez-Arana, J.D.C.; Steffolani, M.E.; Repo-Carrasco-Valencia, R.; Pérez, G.T., & Condezo-Hoyos, L. (2019). Physicochemical and functional properties of isolated starch and their correlation with flour from the Andean Peruvian quinoa varieties. International Journal of Biological Macromolecules, 147(15), 997-1007.
Zhang, D., Wang, L., Tan, B., & Zhang, W. (2020a). Dietary fibre extracted from different types of whole grains and beans: a comparative study. International Journal of Food and Technology, 55, 2188-2196.
Zhang, Q., Xing, B., Sun, M., Zhou, B., Ren, G., & Qin, P. (2020b). Changes in bio-accessibility, polyphenol profile and antioxidants of quinoa and djulis sprouts during in vitro simulated gastrointestinal digestion. Food Science, & Nutrition, 8, 4232-4241.
Zhu, F. (2020). Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydrate Polymers, 248, 116819.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Pámela Ponce de León Saavedra, Jenny del Carmen Valdez-Arana
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).