Vermicompost enriquecido con microorganismos benéficos bajo dos sistemas de producción y sus efectos en el rábano (Raphanus sativus L.)

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2019.02.08

Palabras clave:

estiércol vacuno, microorganismos benéficos, vermicompost, Eisenia foetida.

Resumen

Se evaluó la calidad de vermicompost resultante de excreta de vacuno bajo dos sistemas de producción a través de sus parámetros físico - químicos y de su efecto sobre el crecimiento y el rendimiento de plantas de rábano (Rhaphanus sativus L) bajo condiciones de campo en la Universidad Nacional Agraria la Molina (UNALM), Lima, Perú. Se empleó un diseño de bloques completo al azar (DBCA) 12 tratamientos con tres repeticiones. El primer factor de estudio incluyó dos tipos de compost de vacuno, compostados bajo dos tratamientos (lavado e inoculado con microorganismos benéficos). Como segundo factor se empleó dos tipos de microorganismos (Bacillus sp., y microorganismos benéficos). Un tercer factor incluyó dos sistemas de producción de vermicompost (zanja y techo a dos aguas) empleando Eisenia foetida (40 días). Los vermicomposts procedentes del sistema zanja presentaron mayor descenso en salinidad, pH, relación C/N, contenido total de fósforo, potasio, sodio y mayor incremento en contenido de humedad, calcio, magnesio y sustancias húmicas. C/N indicó la estabilización del vermicompost. En el rendimiento del rábano el tratamiento MZM (compost inoculado con microorganismos benéficos del sistema zanja) alcanzó mayor altura y peso fresco de hojas y peso de hipocótilo.

Citas

Aira, M.; Monroy, F.; Domínguez, J. 2007. Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Science of the Total Environment 385(1-3): 252-261.

Aira, M.; Bybee, S.; Pérez-Losada, M.; Domínguez, J. 2015. Feeding on microbiomes: Effects of detritivory on the taxonomic and phylogenetic bacterial composition of animal manures. FEMS Microbiology Ecology 91(11): 1-10.

Akbar Babael, A.; Goudarzi, G.; Neisi, A.; Ebrahimi, Z.; Alavi, N. 2016. Vermicom-posting of cow dung, kitchen waste and sewage sludge with bagasse using Eisenia fetida. J Adv Environ Health R 4(42): 88-94.

Ali, T.; Mohammad, M.N.; Mohammad, P. 2018. Effects of vermicompost and vermiwash biofertilizers on fenugreek (Trigonella foenum) plant. Communications in Soil Science and Plant Analysis. USA.1-10 .

Alvarez, M.; Tucta, F.; Quispe, E.; Meza, V. 2018. Incidence of the inoculation of beneficial microorganisms in the strawberry (Fragaria sp.) crop. Scientia Agropecuaria 9(1): 33-42.

Amini, S.; Farahani Maleki, S.; Sharghi, Y.; Zahedi, H. 2015. Influence of vermicompost and bacterium of Bacillus and Pseudomonas on growth , yield and morphological traits of saffron .

Atiyeh, R.M.; Subler, S.; Edwards, C.A.; Bachman, G.; Metzger, J.D.; Shuster, W. 2000. Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia 44(5): 579-590.

Balasubramani, R.; Sang, R.L.; Soon, W.C.; Dinh Duc, N.; Wood J.C.W.; Balamuralikrishnan, B.; Hupenyu Allan, M.; Mariadhas, V.A.; Naif, Abdullah, A-D; Ganesan, S. 2019. Positive e ff ects of compost and vermicompost produced from tannery waste- animal fl eshing on the growth and yield of commercial crop-tomato (Lycopersicon esculentum L.) plant. Journal of Environmental Management 234: 154-158.

Barea, J.M.; Navarro, E.; Montoya, E. 1976. Pro-duction of plant growth regulators by Rhizosphere phosphate solubilizing bacteria. J of Applied Bacteriology 40(2): 129-134.

Barillari, J.; Cervellati, R; Costa, S; Guerra, MC; Speroni, E; Utan, A; Iori, R. 2006. Antioxidant and choleretic properties of Raphanus sativus L. sprout (Kaiware Daikon) extract. Journal of Agricultural and Food Chemistry 54(26): 9773-9778.

Bhat, S.A.; Singh, J.; Vig, A.P. 2016. Effect on growth of earthworm and chemical para-meters during vermicomposting of pressmud sludge mixed with cattle dung mixture. Procedia Environmental Sciences 35: 425-434.

Black, C.A.; Evans's, D.O.; Ensmunger, L.E.; White, J.L.; Clark, F.E.; Dineure, R.C. 1965. Methods of Soil Analysis II, Chemical and Microbiological Properties. American Soc. Argon. Madison, Wisconsin, USA.

Chidavaenzi, M.; Jere, M.; Bradley, M. 1997. Water and sanitation for all : partnerships and innovations Pit latrine effluent infiltration into groundwater. 23rd WEDC Conference, 1–5 September 1997: 59-62.

Das, D.; Bhattacharyya, P.; Ghosh, BC.; Banik, P. 2016. Bioconversion and biodynamics of Eisenia foetida in different organic wastes through microbially enriched vermicon-version technologies. Ecological Engineering 86: 154-161.

Diacono, M.; Montemurro, F. 2010. Long-term effects of organic amendments on soil fertility: A review. Agronomy for Sustainable Development 30: 401-422.

Edwards, C.; Scott, S.; Arancon, N. 2011. Quality criteria for vermicompost. Vermiculture technology. United States of America, CRC Press, p. 301.

Elvira, C.; Sampedro, L.; Benítez, E.; Nogales, R. 1998. Vermicomposting of sludges from paper mill and dairy industries with Eisena andrei: A pilot-scale study. Bioresource Technology 63(3): 205-211.

Etesami, H.; Emami, S.; Alikhani, H.A. 2017. Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects ­ A review. Journal of soil science and plant nutrition 17(4): 897-911.

Fernández-Gómez, M.J.; Nogales, R.; Insam, H.; Romero, E.; Goberna, M. 2010. Continuous-feeding vermicomposting as a recycling management method to revalue tomato-fruit wastes from greenhouse crops. Waste Management 30(12): 2461-2468.

Ghosh, P.; Dash, P.K.; Sarker, R.; Mannan, A. 2014. Effect of salinity on germination, growth and yield of radish (Raphanus Sativus L.) varieties. International Journal of Biosciences (IJB) 5(1): 37-48.

Gupta, V. 2012. Beneficial Microorganisms for sustainable agriculture. 2012: 347-369.

Hernández, A.J.; Chacin, L.; Avila, J.; El khatib, N.; Chirinos, I.; Bracho, B. 2011. Methods salinity management of cattle dung for vermicomposting with the red worm ( Eisenia andrei ) Introducción. Revista Facultad de Agronomia 1: 342-350.

Higa, T.; Parr, J.F. 1989. Microorganismos benéficos y efectivos para una agricultura medio ambiente sostenible. 1989: 1-14.

Hughes, R.J.; Nair, J.; Ho, G. 2009. The risk of sodium toxicity from bed accumulation to key species in the vermifiltration wastewater treatment process. Bioresource technology 100(16): 3815-3819.

Karaca, A. 2011. Biology of earthworms. Turkey, Springer, Berlin, Heidelberg, v.24, 332 pp.

Karsten, G.; Drake, HL. 1995. Comparative assessment of the aerobic and anaerobic microfloras of earthworm guts and forest soils. Applied and Environmental Micro-biology 44: 1039-1044.

Kaviraj; Sharma, S. 2003. Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresource technology 90(2): 169-173.

Kostecka, J; Paczka, G. 2006. Possible use of earthworm Eisenia fetida (Saving.) biomass for breeding aquarium fish. European Journal of Soil Biology 42: 231-233.

Kumar, R.; Verma, D.; Singh, B.L.; Kumar, U.; Shweta. 2011. Composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicom-posting. Bioresource Technology 101(17): 6707-6711.

Lazcano, C; Gómez-Brandón, M; Domínguez, J. 2008. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72(7): 1013-1019.

Lee, J-K; Park, I; Choi, Y-J; Cho, J-S. 2012. Bacillus strains as feed additives: In vitro evaluation of its potential probiotic properties. Revista Colombiana de Ciencias Pecuarias 25: 577-585.

Lim, P.N.; Wu, T.Y.; Clarke, C.; Nik Daud, N.N. 2015. A potential bioconversion of empty fruit bunches into organic fertilizer using Eudrilus eugeniae. Int Journal of Environmental Science and Technology 12(8): 2533-2544.

Lim, S.L.; Lee, L.H.; Wu, T.Y. 2016. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: Recent overview, green-house gases emissions and economic analysis. Journal of Cleaner Production 111: 262-278.

Mahanta, K.; Jha, D.K.; Rajkhowa, D.J.; Kumar, M. 2012. Microbial enrichment of vermicompost prepared from different plant biomasses and their effect on rice (Oryza sativa L.) growth and soil fertility. Biological Agriculture & Horticulture 28(4): 241-250.

Mahmud, M.; Abdullah, R.; Jamilah Syafawati, Y. 2018. Effect of vermicompost amendment on nutritional status of sandy loam soil, growth performance, and yield of pineapple (Ananas comosus var. MD2) under field conditions. Malasia

Maji, D.; Misra, P.; Singh, S.; Kalra, A. 2017. Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Applied Soil Ecology 110: 97-108.

Majlessi, M; Eslami, A; Najafi Saleh, H; Mirsha-fieean, S; Babaii, S. 2012. Vermicomposting of food waste: Assessing the stability and maturity. Iranian Journal of Environmental Health Science and Engineering 9(25): 1-6.

Mitchell, A. 1997. Production of Eisenia fetida and vermicompost from feed-lot cattle manu-re. Soil Biology and Biochemistry 29(3-4): 763-766.

Mousavi, S.A; Faraji, M.; Janjani, H. 2017. Recycling of three different types of rural wastes employing vermicomposting techno-logy by Eisenia fetida at low temperature. 19(4): 601-606.

Nurhidayati, N.; Masyhuri, M; Indiyah, M. 2018. Direct and residual effect of various vermi-compost on soil nutrient and nutrient uptake dynamics and productivity of four mustard Pak ‑ Coi (Brassica rapa L.) sequences in organic farming system. International journal of recycling of organic waste in agriculture.

Nagavallemma, K.P.; Wani, S.P.; Lacroix, S.; Rao M.B.; Sahrawat, K.L. 2006. Vermicomposting: Recycling Wastes into Valuable Organic Fertilizer. SAT eJournal ICRISAT 2(8): 1-14.

Natchimuthu, K; Periasamy, V; Mani, P; J. Arockia, JP. 2019. Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: A viable option for cleaner and enriched vermicompost production. Journal of Cleaner Production. India

Ndegwa, P.M.; Thompson, S.A.; Das, K.C. 2000. Effects of stocking density and feeding rate on vermicomposting of biosolids. Biore-source Technology 71(1): 5-12.

OCDE-FAO (Food and Agriculture Organization of the United Nations). 2017. Carne: situación del mercado. 2017.

Olle, M. 2018. The effect of vermicompost on teh growth and quality of cress (Lepidium sativum). 25-28.

Patidar, A.; Gupta, R.; Tiwari, A. 2013. Potential of microbial inoculated water hyacinth amended thermophilic composting and vermicomposting in biodegradation of agroindustrial waste. Journal of Bioremediation & Biode-gradation 4: 191.

Pinos-Rodríguez, J.M.; García-López, J.C.; Peña-Avelino, L.Y.; Rendón-Huerta, J.A.; González-González, C.; Tristán-Patiño, F. 2012. Impactos y regulaciones ambientales del estiércol generado por los sistemas ganaderos de algunos países de América. Agrociencia 46(4): 359-370.

Rao, M.S.; Kamalnath, M.; Umamaheswari, R.; Rajinikanth, R.; Prabu, P.; Priti, K.; Grace, G.N.; Chaya, M.K.; Gopalakrishnan, C. 2017. Bacillus subtilis IIHR BS-2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Scientia Horticulturae 218: 56-62.

Saravana, S.; Aruna, D. 2013. Nutrient enrich-ment of vermicompost by probiotics supple-mentation. European Journal of Experimental Biology 3(4): 84-88.

Schuldt, M. 2006. Lombricultura. Teoría y prác-tica. Ed. M Prensa. Madrid, s.e., 306 pp.

Schuldt, M; Rumi, A; Gutiérrez, DE. 2005. Deter-minacion de ¨edades¨ (clases) en poblaciones de Eisenia foetida (Annelida : Lumbricidae) y sus implicancias reprobiológicas. Revista del Museo de La Plata 17: 1-10.

Sierra, J.; Desfontaines, L.; Faverial, J.; Loran-ger-Merciris, G.; Boval, M. 2013. Composting and vermicomposting of cattle manure and green wastes under tropical conditions: Carbon and nutrient balances and end-product quality. Soil Research 51(2): 142-151.

Sifolo, S.C.; Flavien, E.; Kouadio, I.K.; Barsan, N.; Nedeff, V.; Bi, Z. 2018. Vermicompost utilization : A way to food security in rural area. Heliyon, Romania.

Sharma, A.; Saha, T.; Arora, A.; Shah, R.; Nain, L. 2017. Efficient Microorganism compost benefits plant growth and improves soil health in calendula and marigold. Horticultural Plant Journal 3(2): 67-72.

Singh, A; Sharma, S. 2002. Composting of a crop residue through treatment with microor-ganisms and subsequent vermicomposting. Bioresource technology 85(2): 107-111.

Sultana, S.; Kashem, M.A.; Mollah, A.K.M. 2015. Comparative assessment of cow manure vermicompost and npk fertilizers and on the growth and production of Zinnia (Zinnia elegans) Flower. Open Journal of Soil Science 05(09): 193-198.

Sumi, C.D.; Yang, B.W.; Yeo, I-C; Hahm, Y.T. 2015. Antimicrobial peptides of the genus Bacillus : a new era for antibiotics. Canadian Journal of Microbiology 61(2): 93-103.

Suthar, S. 2009. Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate. Ecological engineering 35(5): 914-920.

Suthar, S; Singh, S. 2008a. Comparison of some novel polyculture and traditional monoculture vermicomposting reactors to decompose organic wastes. Ecological engineering 33(3-4): 210-219.

Suthar, S; Singh, S. 2008b. Feasibility of vermicomposting in biostabilization of sludge from a distillery industry. Science of the total environment 394(2-3): 237-243.

Tripathi, G; Bhardwaj, P. 2004. Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Bioresource Technology 92(3): 275-283.

Vázquez, J.; Loli, O. 2018. Compost and vermi-compost as amendments in the recovery of a soil degraded by the management of Gypsphila paniculata. Scientia Agropecuaria 9(1): 43-52.

Wang, K.; He, C.; You, S.; Liu, W.; Wang, W.; Zhang, R.; Qi, H.; Ren, N. 2015. Trans-formation of organic matters in animal wastes during composting. Journal of hazardous materials 300: 745-753 .

Wang, S.; Fu, B.J.; Gao, G.Y.; Yao, X.L.; Zhou, J. 2012. Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China. Hydrology and Earth System Sciences 16(8): 2883-2892.

Wani, K.A.; Mamta; Rao, R.J. 2013. Bioconversion of garden waste, kitchen waste and cow dung into valueadded products using earthworm Eisenia fetida. Saudi Journal of Biological Sciences 20(2): 149-154.

Received November 3, 2018.

Accepted April 28, 2019.

Corresponding author: svelecela@ucacue.edu.ec (S. Velecela).

Descargas

Publicado

2019-07-09

Cómo citar

Velecela, S., Meza, V., García, S., Alegre, J., & Salas, C. (2019). Vermicompost enriquecido con microorganismos benéficos bajo dos sistemas de producción y sus efectos en el rábano (Raphanus sativus L.). Scientia Agropecuaria, 10(2), 229-239. https://doi.org/10.17268/sci.agropecu.2019.02.08

Número

Sección

Artículos originales