Contenido de prolina en Solanum lycopersicum pretratado con glicina betaina y sometido a estrés salino

Authors

  • Mercedes Chaman Medina Universidad Nacional de Trujillo
  • Roger Veneros Terrones Universidad Nacional de Trujillo
  • Edita Araujo Castillo Universidad Nacional de Trujillo
  • Aureliano Ramírez Cruz Universidad Nacional de Trujillo
  • Jose Hidalgo Rodríguez Universidad Nacional de Trujillo
  • S. Luis Alaya Universidad Nacional de Trujillo
  • Cynthia Ramos Otiniano Universidad Nacional de Trujillo

Abstract

Las plantas han desarrollado varios mecanismos protectores para contrarrestar el estrés salino, uno de ellos es la acumulación de solutos compatibles como prolina y glicina betaina. Sin embargo, algunos cultivos como el tomate no acumulan glicina betaina, ante esto surge la alternativa de la aplicación exógena de estos compuestos. En este trabajo, se propuso evaluar el contenido de prolina en relación al estado hídrico en plántulas de Solanum lycopersicum  var. Río Grande “tomate” pretratado con diferentes concentraciones de glicina betaina y cultivadas en diferentes niveles de salinidad.  Plántulas fueron tratadas con glicina betaina a concentraciones de 0, 1 y 10 mM, y luego sometidas a cloruro de sodio: 0, 100 y 200 mM agregada esta sal a la solución de riego. Después de 10 días de tratamiento se cuantificó prolina y contenido relativo de agua. El contenido de prolina aumentó con el grado de salinidad y la aplicación de Glicina betaina 1 mM produjo un aumento significativo en NaCl 100mM.

Palabras clave: prolina, glicina betaina, estrés salino, Solanum

References

Munns RA. Physiological processes limiting plant growth in saline soils: Some dogmas and hypothesis. Plant Cell Environ 1993; 16: 15-24.

Blumwald E, Gilad S, Aharon M, Apse P. Sodium transport in plant cells. Biochim et Biophys Acta 2000; 1465:140-15.

Morgan JM. Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 1984; 35: 299-319.

Bohnert HJ, Nelson DE, Jensen RG. Adaptations to environmental stresses. Plant Cell 1995; 25: 1099-1111.

Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Living with water stress: evolution of osmolyte systems. Science 1982; 25: 1214-1222.

Rhodes D, Hanson AD. Quartenary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol & Plant Mol Biol 1993; 44: 357-384.

Hayashi H, Chen THH, Murata N. Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ 1998; 21: 232-239.

Heuer B. Osmoregulatory role of proline in water and saltstressed plants. In: Pessarakli M (ed.) Handbook of pant and crop stress. New York: Marcel Dekker 1994; pp.363-381.

Gorham J. Betaines in higher plants – biosynthesis and role in stress metabolism. In: Wallsgrove, R.M. (ed.), Aminoacids and their Derivates in Higher Plants. University Press, Cambridge 1995; pp.172-203.

Allard F, Houde M, Krol M, Ivanov A, et al. Betaine improves freezing tolerance in wheat. Plant Cell Physiol 1998; 39: 1194-1202.

Nomura M, Ishitani M, Takabe T, Rai AK, Takabe T. Synechococcus sp. PCC7942 transformed with Escherichia coli bet genes produces glycine betaine from choline and acquires resistance to salt stress. Plant Physiol 1995; 107: 703-708.

Wyn RG, Storey R. Betaines. In: Paleg, LG, Aspinall D. (eds.), The Physiology and Biochemistry of Drought Resistance in Plants. Academic Press, Sydney 1981; pp.172-205.

Papageorgiou GC, Fujimura N, Murata N. Protection of the oxygen-evolving photosystem II complex by glycinebetaine. Biochim Biophys Acta 1991; 1057: 361-366.

Jolivet Y, Lahrer F, Hamelin J. Osmoregulation in higher plants: the protective effect of glycinebetaine against the heat destabilization of membranes. Plant Sci Lett 1982; 25: 193-201.

Murata N, Mohanty PS, Hayashi H, Papageorgiou GC. Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex. FEBS Lett 1992; 296: 187-189.

Mamedov MD, Hayashi H, Wada H, Mohanty PS, Papageorgious CC, Murata N. Glycinebetaine enhances and stabilizes the evolution of oxygen and the synthesis of ATP by cyanobacterial thylakoid membranes. FEBS Lett 1991; 294: 271-274.

Jokinen K, Somersalo S, Mäkelä P, Urbano P, et al. Glycinebetaine from sugar beet enhances the yield of field-grown tomatoes. Acta Hort 1999; 487: 233-236.

Maas EV. Salt tolerance of plants. Appl Agricul Res 1986; 1: 12-26.

Tanwar BS. Saline water management for irrigation. International Commission on irrigation and drainage. New Delhi, India. 2003.

Zhao Y, Aspinal D, Paleg LG. Protection of membrane integrity in Medicago sativa L. by glycinebetaine against the effects of freezing. J Plant Physiol 1992; 140: 541-543.

Itai C, Paleg LG. Responses of water-stressed Hordeum distichum L. and Cucumis sativus to proline and betaine. Plant Science Lett 1982; 25: 329-335.

Mäkelä P, Jokinen K, Kontturi M, Peltonen-Sainio P, et al. Foliar application of glycinebetaine—a novel product from sugar beet—as an approach to increase tomato yield. Industr Crops Prod 1998; 7: 139-148.

Mäkelä P, Kontturi M, Pehu E, Somersalo S. Photosynthetic response of drought- and salt-stressed tomato and turnip rape plants to foliar applied glycinebetaine. Physiol Plant 1999; 105: 45-50.

Papageorgiou GC, Murata N. The unusually strong stabilizing effects of glycinebetaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 1995; 44: 243-252.

Mäkelä P, Peltonen-Sainio P, Jokinen K, Pehu E, et al. Uptake and translocation of foliar-applied glycinebetaine in crop plants. Plant Sci 1996; 121: 221-230.

Heuer B. Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Sci 2003; 165, 693-699.

Bates L, Waldren R, Teare Y. Rapid determination of free proline for water stress studies. Plant and soil 1973; 39: 205-207.

Chen WP, Li PH, Chen THH. Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant Cell Environ 2000; 23: 609-618.

Amini F, Ehsanpour A. Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. Am J Biochem & Biotech 2005; 1: 212-216.

Hanson AD, Wyse R. Biosynthesis, translocation, and accumulation of betaine in sugarbeet and its progenitors in relation to salinity. Plant Physiol 1982; 70: 1191-1198.

Mc Cue KF, Hanson AD. Drought and salt tolerance: towards understanding and aplication. Trends Biotech 1990; 8: 358-362.

Park EJ, Jeknic Z, Chen THH. Exogenous Application of Glycinebetaine Increases Chilling Tolerance in Tomato Plants. Plant Cell Physiol 2006; 47: 706-714

Buchanan BB, Gruissem W, Jones RL. Biochemistry & Molecular Biology of Plants. American Society of Plant Physiologists. Rockville, Maryland. USA. 2000.

Rojas Garcidueñas, M. La resistencia a la sequía. Ciencia UANL 2003; 3: 326-331.

Delauney AJ, Verma DPS. Proline biosynthesis and osmoregulation in plants. Plant J 1993; l 4: 215-223.

Bartels D, Ramanjulu S. Drought and salt tolerance in plants. Plant Sci 2005; 24: 23-58

Published

2014-07-08

How to Cite

Medina, M. C., Terrones, R. V., Castillo, E. A., Cruz, A. R., Rodríguez, J. H., Alaya, S. L., & Otiniano, C. R. (2014). Contenido de prolina en Solanum lycopersicum pretratado con glicina betaina y sometido a estrés salino. REBIOL, 34(1), 19-25. Retrieved from https://revistas.unitru.edu.pe/index.php/facccbiol/article/view/584