HISTORIA EVOLUTIVA DE LOS GENES SOX DURANTE DEL PROCESO DE DUPLICACIÓN GÉNICA
Abstract
La familia de genes Sox codifica importantes factores de transcripción involucrados en las primeras etapas de desarrollo embrionario. Contienen una región conservada llamada caja HMG que es, al menos, 50% similar a la caja HMG del gen Sry. Se han propuesto diversos modelos filogenéticos que permitan una mejor comprensión de su evolución. Dichos modelos sugieren una posible aparición en el último ancestro común, así como una posterior divergencia en los metazoos tempranos debido a varios eventos de duplicación de genoma. Las copias duplicadas adquirieron nuevas funciones o pasaron por un proceso de sub-funcionalización que condujo a la aparición de nuevas subfamilias génicas en diferentes grupos animales. Aquí, revisamos el conocimiento actual sobre la familia de genes Sox, su evolución y sus funciones.
Palabras clave: Genes Sox, proteínas SOX, caja HMG, duplicación génica, filogenia.
Abstract
Sox gene family encodes important transcription factors involved in early stages of embryonic development. They contain a conserved region called HMG-box which is at least 50% similar to the HMG-box of Sry gene. Several phylogenetic models have been proposed for a better understanding of their evolution suggesting a possible emergence in the last common ancestor, and a posterior divergence in early metazoans due to several genome duplication events. Duplicated copies acquired new functions or went through sub-functionalization leading to the emergence of new gene sub-families in different animal clusters. Here, we review the current knowledge on Sox gene family, their evolution and their functions.
Keywords: Sox genes, SOX proteins, HMG-box, gene duplication, phylogeny.
DOI: http://dx.doi.org/10.17268/rebiol.2019.39.02.06
References
Akiyama, H., Chaboissier, M.-C., Martin, J. F., Schedl, A., & de Crombrugghe, B. (2002). The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes & Development, 16(21), 2813–2828. https://doi.org/10.1101/gad.1017802.
Argentaro, A., Olsson, J., Critcher, R., McDowall, S. G., & Harley, V. R. (2000). Genomic characterisation and fine mapping of the human SOX13 gene. Gene, 250(1–2), 181–189. https://doi.org/10.1016/s0378-1119(00)00157-8.
Berbejillo, J., Martinez-Bengochea, A., Bedo, G., Brunet, F., Volff, J.-N., & Vizziano-Cantonnet, D. (2012). Expression and phylogeny of candidate genes for sex differentiation in a primitive fish species, the Siberian sturgeon, Acipenser baerii. Molecular Reproduction and Development, 79(8), 504–516. https://doi.org/10.1002/mrd.22053.
Bowles, J., Schepers, G., & Koopman, P. (2000). Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Developmental Biology, 227(2), 239–255. https://doi.org/10.1006/dbio.2000.9883.
Breitling, R., & Gerber, J.-K. (2000). Origin of the paired domain. Development Genes and Evolution, 210(12), 644–650. https://doi.org/10.1007/s004270000106.
Canning, C. A., & Lovell-Badge, R. (2002). Sry and sex determination: how lazy can it be? Trends in Genetics, 18(3), 111–113. https://doi.org/10.1016/S0168-9525(01)02615-4.
Chaboissier, M.-C., Kobayashi, A., Vidal, V. I. P., Lützkendorf, S., van de Kant, H. J. G., Wegner, M., … Schedl, A. (2004). Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development (Cambridge, England), 131(9), 1891–1901. https://doi.org/10.1242/dev.01087.
Chau, K. Y., Munshi, N., Keane-Myers, A., Cheung-Chau, K. W., Tai, A. K., Manfioletti, G., … Ono, S. J. (2000). The architectural transcription factor high mobility group I(Y) participates in photoreceptor-specific gene expression. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(19), 7317–7324.
Cock, J. Mark, Kristin Tessmar-Raible, Catherine Boyen & Frédérique Viard (2010). Introduction to Marine Genomics. Springer (PDF) . DOI: 10.1007/978-90-481-8639-6.
Cremazy, F., Soullier, S., Berta, P., & Jay, P. (1998). Further complexity of the human SOX gene family revealed by the combined use of highly degenerate primers and nested PCR. FEBS Letters, 438(3), 311–314. https://doi.org/10.1016/S0014-5793(98)01294-0.
Crow, K. D., & Wagner, G. P. (2006). What Is the Role of Genome Duplication in the Evolution of Complexity and Diversity? Molecular Biology and Evolution, 23(5), 887–892. https://doi.org/10.1093/molbev/msj083.
Degnan, B. M., Vervoort, M., Larroux, C., & Richards, G. S. (2009). Early evolution of metazoan transcription factors. Current Opinion in Genetics & Development, 19(6), 591–599. https://doi.org/10.1016/j.gde.2009.09.008.
Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y. L., & Postlethwait, J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics, 151(4), 1531–1545.
Kaessmann, H. (2010). Origins, evolution, and phenotypic impact of new genes. Genome Research, 20(10), 1313–1326. https://doi.org/10.1101/gr.101386.109.
King, N., Westbrook, M. J., Young, S. L., Kuo, A., Abedin, M., Chapman, J., … Rokhsar, D. (2008). The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature, 451(7180), 783–788. https://doi.org/10.1038/nature06617.
Koopman, P., Schepers, G., Brenner, S., & Venkatesh, B. (2004). Origin and diversity of the SOX transcription factor gene family: genome-wide analysis in Fugu rubripes. Gene, 328, 177–186. https://doi.org/10.1016/j.gene.2003.12.008.
Larroux, C., Fahey, B., Liubicich, D., Hinman, V. F., Gauthier, M., Gongora, M., … Degnan, B. M. (2006). Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evolution & Development, 8(2), 150–173. https://doi.org/10.1111/j.1525-142X.2006.00086.x.
Larroux, C., Luke, G. N., Koopman, P., Rokhsar, D. S., Shimeld, S. M., & Degnan, B. M. (2008). Genesis and expansion of metazoan transcription factor gene classes. Molecular Biology and Evolution, 25(5), 980–996. https://doi.org/10.1093/molbev/msn047.
Lefebvre, V., Dumitriu, B., Penzo-Méndez, A., Han, Y., & Pallavi, B. (2007). Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. The International Journal of Biochemistry & Cell Biology, 39(12), 2195–2214. https://doi.org/10.1016/j.biocel.2007.05.019.
McKimmie, C., Woerfel, G., & Russell, S. (2005). Conserved genomic organisation of Group B Sox genes in insects. BMC Genetics, 6, 26. https://doi.org/10.1186/1471-2156-6-26.
Meyer, A., & Van de Peer, Y. (2005). From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 27(9), 937–945. https://doi.org/10.1002/bies.20293.
Peer, Y. V. de, Maere, S., & Meyer, A. (2009). The evolutionary significance of ancient genome duplications. Nature Reviews Genetics, 10(10), 725–732. https://doi.org/10.1038/nrg2600.
Popovic, J., & Stevanovic, M. (2009). Remarkable evolutionary conservation of SOX14 orthologues. Journal of Genetics, 88(1), 15–24. https://doi.org/10.1007/s12041-009-0003-4.
Qi-long, C., Zi-jun, Q., #, Jian#, C., Sheng#, H. U., Hui, Z., … Wen-li, M. A. (2012). Isolation and sequencing of the HMG domains of fifteen Sox genes from Hyla sanchiangensis, and analysis of the evolutionary behaviors of Sox duplicated copies based on bioinformatics. African Journal of Microbiology Research. https://doi.org/10.5897/AJMR12.300.
Schepers, G. E., Teasdale, R. D., & Koopman, P. (2002). Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Developmental Cell, 3(2), 167–170. https://doi.org/10.1016/s1534-5807(02)00223-x.
Srivastava, M., Simakov, O., Chapman, J., Fahey, B., Gauthier, M. E. A., Mitros, T., … Rokhsar, D. S. (2010). The Amphimedon queenslandica genome and the evolution of animal complexity. Nature, 466(7307), 720–726. https://doi.org/10.1038/nature09201.
Voldoire, E. (2013). Duplication de génome et évolution de la famille Sox chez les poissons téléostéens (Phd thesis, Ecole normale supérieure de lyon - ENS LYON). Retrieved from https://tel.archives-ouvertes.fr/tel-01124192/document.
Wegner, M. (1999). From head to toes: the multiple facets of Sox proteins. Nucleic Acids Research, 27(6), 1409–1420. https://doi.org/10.1093/nar/27.6.1409.
Wright, E., Hargrave, M. R., Christiansen, J., Cooper, L., Kun, J., Evans, T., … Koopman, P. (1995). The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nature Genetics, 9(1), 15–20. https://doi.org/10.1038/ng0195-15.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 REBIOL
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Política propuesta para revistas que ofrecen acceso abierto
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la «Licencia de reconocimiento» de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación en esta revista.
- Los autores podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (por ejemplo, depositarla en un repositorio institucional o publicarla en un libro) siempre que se indique la publicación inicial en esta revista.
- Los autores tienen el derecho a hacer una posterior publicación de su trabajo, de utilizar el artículo o cualquier parte de aquel (por ejemplo: una compilación de sus trabajos, notas para conferencias, tesis, o para un libro), siempre que indiquen su publicación inicial en la revista REBIOL (autores del trabajo, revista, volumen, número y fecha).