EFECTO ANTIMICROBIANO DE LAS FIBRAS DE Vicugna pacos “alpaca” FUNCIONALIZADAS CON NANOPARTÍCULAS DE PLATA

Autores/as

Palabras clave:

AATCC 100, citratro trisódico, fibras de alpaca, funcionalización, nanotecnología

Resumen

Las fibras de Vicugna pacos "alpaca” se han utilizado por los pobladores del Ande peruano desde tiempos inmemoriales como materia
prima para la industria textil. Sin embargo, en el mundo globalizado, necesita un valor agregado que le permita competir con otras materias
primas como algodón, seda, lana, entre otras. La nanotecnología permite cambiar las propiedades de los materiales mediante la
incorporación de nanopartículas a su superficie, proceso conocido como funcionalización. Nuestro objetivo investigativo determinó el
efecto antimicrobiano de fibras de alpaca funcionalizadas con nanopartículas de plata (AgNPs) sintetizadas por vía química, con diferentes
concentraciones de citrato trisódico. Utilizando la metodología AATCC 100 modificada, evaluamos dicho efecto sobre las cepas bacterianas
de Escherichia coli y Staphylococcus aureus expuestas a fibras café oscuro brillante. Los resultados cualitativos y cuantitativos señalan que
son superiores los tratamientos de 6 y 10 mg de citrato trisódico. Por lo tanto, se infiere que las fibras funcionalizadas presentan un adecuado
efecto antibacteriano siendo una alternativa promisoria para la industria textil peruana.

DOI: http://dx.doi.org/10.17268/rebiol.2022.42.01.04

Citas

Abdel-Mohsen, A. M., Hrdina, R., Burgert, L., Abdel-Rahman, R. M., Hašová, M., Šmejkalová, D., Kolář, M., Pekar, M., & Aly, A. S. (2013). Antibacterial activity and cell viability of hyaluronan fiber with silver nanoparticles. Carbohydrate Polymers, 92(2), 1177–1187.

Abid, M., Bouattour, S., Ferraria, A. M., Conceição, D. S., Carapeto, A. P., Vieira Ferreira, L. F., Botelho do Rego, A. M., Chehimi, M. M., Rei Vilar, M., & Boufi, S. (2017). Facile functionalization of cotton with nanostructured silver/titania for visible-light plasmonic photocatalysis. Journal of Colloid and Interface Science, 507, 83–94.

Aktürk, A., Erol Taygun, M., Karbancıoğlu Güler, F., Goller, G., & Küçükbayrak, S. (2019). Fabrication of antibacterial polyvinylalcohol nanocomposite mats with soluble starch coated silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 255–262.

Ballottin, D., Fulaz, S., Cabrini, F., Tsukamoto, J., Durán, N., Alves, O. L., & Tasic, L. (2017). Antimicrobial textiles: Biogenic silver nanoparticles against Candida and Xanthomonas. Materials Science and Engineering C, 75, 582–589.

Barud, H. S., Barrios, C., Regiani, T., Marques, R. F. C., Verelst, M., DexpertGhys, J., Messaddeq, Y., & Ribeiro, S. J. L. (2008). Self-supported silver nanoparticles containing bacterial cellulose membranes. Materials Science and Engineering C, 28(4), 515–518.

Bharti, J., & Mathur, A. (2017). Study of the antimicrobial effect of the silver nanoparticles against biofilm producing Staphylococcus aureus strains. International Journal of Scientific and Research Publications, 7(3), 153–163.

Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7, 1–17.

Dong, X., Ji, X., Wu, H., Zhao, L., Li, J., & Yang, W. (2009). Shape control of silver nanoparticles by stepwise citrate reduction. Journal of Physical Chemistry C, 113(16), 6573–6576.

Durán, N., Durán, M., De Jesus, M. B., Seabra, A. B., Fávaro, W. J., & Nakazato, G. (2016). Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(3), 789–799.

Ebrahimzadeh, M. A., Naghizadeh, A., Amiri, O., Shirzadi-Ahodashti, M., & Mortazavi-Derazkola, S. (2019). Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorganic Chemistry, 103425.

El-Naggar, M. E., Hassabo, A. G., Mohamed, A. L., & Shaheen, T. I. (2017). Surface modification of SiO2 coated ZnO nanoparticles for multifunctional cotton fabrics. Journal of Colloid and Interface Science, 498, 413–422.

El-Rafie, M. H., Ahmed, H. B., & Zahran, M. K. (2014). Characterization of nanosilver coated cotton fabrics and evaluation of its antibacterial efficacy. Carbohydrate Polymers, 107(1), 174–181.

El-Rafie, M. H., Mohamed, A. A., Shaheen, T. I., & Hebeish, A. (2010). Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydrate Polymers, 80(3), 779–782.

Emam, H. E., El-Rafie, M. H., & Rehan, M. (2021). Functionalization of Unbleached Flax Fibers by Direct Integration of Nano-silver through Internal and External Reduction. Fibers and Polymers, 22(11), 3014–3024.

Hammal, A., & Alhamed ALduihi, H. (2022). A New Medical Dressing with Silver Nanoparticles to Treat Diabetic Foot Patient. Al-Mustansiriyah Journal of Science, 33(1), 1–5.

He, S., Yao, J., Xie, S., Pang, S., & Gao, H. (2001). Investigation of passivated silver nanoparticles. Chemical Physics Letters, 343(1–2), 28–32.

Ilić, V., Šaponjić, Z., Vodnik, V., Potkonjak, B., Jovančić, P., Nedeljković, J., & Radetić, M. (2009). The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohydrate Polymers, 78(3), 564–569.

Jagajjanani, K., & Korumilli, T. (2020). Instant Synthesis of Silver Particles on Silk Fibres: Characterization and Antimicrobial Study. Composites Communications.

Kelly, F. M., & Johnston, J. H. (2011). Colored and functional silver nanoparticle-wool fiber composites. ACS Applied Materials and Interfaces, 3(4), 1083–1092.

Küp, F. Ö., Çoşkunçay, S., & Duman, F. (2020). Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities. Materials Science and Engineering C, 107, 110207.

La Spina, R., Mehn, D., Fumagalli, F., Rossi, F., Gilliland, D., Holland, M., & Reniero, F. (2020). Synthesis of citrate-stabilized silver nanoparticles modified by thermal and ph preconditioned tannic acid. Nanomaterials, 10(10), 1–16.

Le Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10(3), 339–354.

Li, Z., Meng, J., Wang, W., Wang, Z., Li, M., Chen, T., & Liu, C. J. (2017). The room temperature electron reduction for the preparation of silver nanoparticles on cotton with high antimicrobial activity. Carbohydrate Polymers, 161(17), 270–276.

Mirzajani, F., Ghassempour, A., Aliahmadi, A., & Esmaeili, M. A. (2011). Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Research in Microbiology, 162(5), 542–549.

Mortazavi-Derazkola, S., Ebrahimzadeh, M. A., Amiri, O., Goli, H. R., Rafiei, A., Paździor, K., Bilińska, L., & Ledakowicz, S. (2019). A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chemical Engineering Journal, 376.

Noorian, S. A., Hemmatinejad, N., & Navarro, J. A. R. (2019). Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities. International Journal of Biological Macromolecules.

Nourbakhsh, S., Habibi, S., & Rahimzadeh, M. (2017). Copper nano-particles for antibacterial properties of wrinkle resistant cotton fabric. Materials Today: Proceedings, 4(7), 7032–7037.

Ogura, H., Maruyama, M., Matsubayashi, R., Ogawa, T., Nakamura, S., Komatsu, T., Nagasawa, H., Ichimura, A., & Isoda, S. (2010). Carboxylate-passivated silver nanoparticles and their application to sintered interconnection: A replacement for high temperature leadrich solders. Journal of Electronic Materials, 39(8), 1233–1240.

Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J., & Fernig, D. G. (2014). A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst, 139(19), 4855–4861.

Paździor, K., Bilińska, L. & Ledakowicz, S. (2018). A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chemical Engineering Journal, 376, S1385894718325294.

Perera, S., Bhushan, B., Bandara, R., Rajapakse, G., Rajapakse, S., & Bandara, C. (2013). Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silvernanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 975–989.

Pillai, Z. S., & Kamat, P. V. (2004). What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? Journal of Physical Chemistry B, 108(3), 945–951.

Pinho, E., Magalhães, L., Henriques, M., & Oliveira, R. (2010). Antimicrobial activity assessment of textiles: standard methods comparison. Annals of Microbiology, 61(3), 493–498.

Rana, M., Hao, B., Mu, L., Chen, L., & Ma, P. C. (2016). Development of multifunctional cotton fabrics with Ag/AgBr-TiO2 nanocomposite coating. Composites Science and Technology, 122, 104–112.

Ranoszek-Soliwoda, K., Tomaszewska, E., Socha, E., Krzyczmonik, P., Ignaczak, A., Orlowski, P., Krzyzowska, M., Celichowski, G., & Grobelny, J. (2017). The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. Journal of Nanoparticle Research, 19(8).

Srisod, S., Motina, K., Inprasit, T., & Pisitsak, P. (2018). A green and facile approach to durable antimicrobial coating of cotton with silver nanoparticles, whey protein, and natural tannin. Progress in Organic Coatings, 120(March), 123–131.

Torbat, T. V., & Javanbakht, V. (2019). Fabrication of TiO2/Zn2TiO4/Ag nanocomposite for synergic effects of UV radiation protection and antibacterial activity in sunscreen. In Colloids and Surfaces B: Biointerfaces.

Thi Thu Ha, P., Xuan Hoa, V., Kha, T. D., Dien, N. D., Thanh, L. D., Hung, N. Q., & Van Luyen, L. (2021). Synthesis and Characterization of Silver Nanoparticles for Antibacterial Application against Bacillus subtilis and Pseudomonas aeruginosa. VNU Journal of Science: Mathematics - Physics, 37(2), 77–83.

Thiele, M., Götz, I., Trautmann, S., Müller, R., Csáki, A., Henkel, T., & Fritzsche, W. (2015). Wet-chemical Passivation of Anisotropic Plasmonic Nanoparticles for LSPR-sensing by a Silica Shell. Materials Today: Proceedings, 2(1), 33–40.

Ul, S., Khan, H., Khan, S. M., & Majeed, A. (2019). Antimicrobial effect of colloidal argentum colloid on ampicillin resistant Staphylococcus aureus. J Entomol Zool Stud, 7(1), 181–183.

Valenti, L. E., & Giacomelli, C. E. (2017). Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions. Journal of Nanoparticle Research, 19(5).

Descargas

Publicado

2022-06-30

Cómo citar

Pedro Huaman, J. J., Zavaleta Espejo, G. G., Felix Quintero, H. A., Jáuregui Rosas, S. R., Mejía Uriarte, E. V., Saldaña Jiménez, J. A., Tafur Trujillo, K. A., & Soto Varas, C. M. (2022). EFECTO ANTIMICROBIANO DE LAS FIBRAS DE Vicugna pacos “alpaca” FUNCIONALIZADAS CON NANOPARTÍCULAS DE PLATA. REBIOL, 42(1), 29-38. Recuperado a partir de https://revistas.unitru.edu.pe/index.php/facccbiol/article/view/4586