Fully Connected Neural Network for the Classification of Calls from Two Spe-cies of Glass Frogs
DOI:
https://doi.org/10.17268/rev.cyt.2025.01.04Keywords:
Machine Learning, Dense Neural Networks, Bioacoustics, Frog CallsAbstract
This document presents the application of machine learning (ML) for the classification of calls from glass frog species, Hyalinobatrachium fleischmanni (Hf) and Espadarana prosoblepon (Ep) based on audio recordings. For this, a dataset of acoustic data obtained through frequency manipulation (+4 semitones for Hf and -4 semitones for Ep) and the incorporation of environmental noise (white noise/pink noise) was used. The ML model was trained with original and modified frog calls in order to distinguish the calls under variations in the acoustic signals. Model evaluation was carried out using F1-score, precision, and recall metrics. The results show the model's ability to classify frog calls with high accuracy (98%).
References
Ayoola, V. B., Idoko, I. P., Eromonsei, S. O., Afolabi, O., Apampa, A. R., & Oyebanji, O. S. (2024). The role of big data and AI in enhancing biodiversity conservation and resource management in the USA. World Journal of Advanced Research and Reviews, 23(2), 1851–1873. https://doi.org/10.30574/wjarr.2024.23.2.2350
Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., Deppe, J. L., Krakauer, A. H., Clark, C., Cortopassi, K. A., Hanser, S. F., McCowan, B., Ali, A. M., & Kirschel, A. N. G. (2011). Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considera-tions and prospectus: Acoustic monitoring. The Journal of Applied Ecology, 48(3), 758–767. https://doi.org/10.1111/j.1365-2664.2011.01993.x
Bosch, J., & De la Riva, I. (2004). Are frog calls modulated by the environment? An analysis with anuran species from Bolivia. Canadian Journal of Zoology, 82(6), 880–888. https://doi.org/10.1139/z04-060
Chalmers, C., Fergus, P., Wich, S., & Longmore, S. N. (2021). Modelling animal biodiversity using acoustic monitoring and deep learning. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1–7). IEEE.
Chen, Z., Gao, D., Sun, K., Zhao, X., Yu, Y., & Wang, Z. (2023). Densely connected networks with multiple features for classifying sound signals with reverberation. Sensors (Basel, Switzerland), 23(16), 7225. https://doi.org/10.3390/s23167225
Jeantet, L., & Dufourq, E. (2023). Improving deep learning acoustic classifiers with contextual information for wildlife monitoring. Ecological Informatics, 77(102256), 102256. https://doi.org/10.1016/j.ecoinf.2023.102256
Rao, R., Montgomery, J., Garg, S., & Charleston, M. (2020). Bioacoustics data analysis – A taxonomy, sur-vey and open challenges. IEEE access: practical innovations, open solutions, 8, 57684–57708. https://doi.org/10.1109/access.2020.2978547
Lapp, S., Wu, T., Richards-Zawacki, C., Voyles, J., Rodriguez, K. M., Shamon, H., & Kitzes, J. (2021). Auto-mated detection of frog calls and choruses by pulse repetition rate. Conservation Biology: The Journal of the Society for Conservation Biology, 35(5), 1659–1668. https://doi.org/10.1111/cobi.13718
Mcloughlin, M. P., Stewart, R., & McElligott, A. G. (2019). Automated bioacoustics: methods in ecology and conservation and their potential for animal welfare monitoring. Journal of the Royal Society, Interface, 16(155), 20190225. https://doi.org/10.1098/rsif.2019.0225
Powers, D. M. W. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, marked-ness and correlation. arXiv [cs.LG]. https://doi.org/10.48550/ARXIV.2010.16061
Tiwari, V. (2010). MFCC and its applications in speaker recognition. International Journal on Emerging Technologies, 1(1), 19–22.
Vargas-Castro, L. E., Hernández-Ledezma, J., & Pérez-Gómez, G. (2024). Glass Frog Calls. Dataset. https://doi.org/10.5281/zenodo.14251255
Willacy, R. J., Mahony, M., & Newell, D. A. (2015). If a frog calls in the forest: Bioacoustic monitoring re-veals the breeding phenology of the endangered Richmond Range mountain frog (Philoria richmonden-sis). Austral Ecology, 40(6), 625–633. https://doi.org/10.1111/aec.12228
Xie, J., Zhu, M., Hu, K., Zhang, J., Hines, H., & Guo, Y. (2022). Frog calling activity detection using light-weight CNN with multi-view spectrogram: A case study on Kroombit tinker frog. Machine Learning with Applications, 7(100202), 100202. https://doi.org/10.1016/j.mlwa.2021.100202
Zheng, F., Zhang, G., & Song, Z. (2001). Comparison of different implementations of MFCC. Journal of Computer Science and Technology, 16(6), 582–589. https://doi.org/10.1007/bf02943243
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado