Fully Connected Neural Network for the Classification of Calls from Two Spe-cies of Glass Frogs

Authors

DOI:

https://doi.org/10.17268/rev.cyt.2025.01.04

Keywords:

Machine Learning, Dense Neural Networks, Bioacoustics, Frog Calls

Abstract

This document presents the application of machine learning (ML) for the classification of calls from glass frog species, Hyalinobatrachium fleischmanni (Hf) and Espadarana prosoblepon (Ep) based on audio recordings. For this, a dataset of acoustic data obtained through frequency manipulation (+4 semitones for Hf and -4 semitones for Ep) and the incorporation of environmental noise (white noise/pink noise) was used. The ML model was trained with original and modified frog calls in order to distinguish the calls under variations in the acoustic signals. Model evaluation was carried out using F1-score, precision, and recall metrics. The results show the model's ability to classify frog calls with high accuracy (98%).

References

Ayoola, V. B., Idoko, I. P., Eromonsei, S. O., Afolabi, O., Apampa, A. R., & Oyebanji, O. S. (2024). The role of big data and AI in enhancing biodiversity conservation and resource management in the USA. World Journal of Advanced Research and Reviews, 23(2), 1851–1873. https://doi.org/10.30574/wjarr.2024.23.2.2350

Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., Deppe, J. L., Krakauer, A. H., Clark, C., Cortopassi, K. A., Hanser, S. F., McCowan, B., Ali, A. M., & Kirschel, A. N. G. (2011). Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considera-tions and prospectus: Acoustic monitoring. The Journal of Applied Ecology, 48(3), 758–767. https://doi.org/10.1111/j.1365-2664.2011.01993.x

Bosch, J., & De la Riva, I. (2004). Are frog calls modulated by the environment? An analysis with anuran species from Bolivia. Canadian Journal of Zoology, 82(6), 880–888. https://doi.org/10.1139/z04-060

Chalmers, C., Fergus, P., Wich, S., & Longmore, S. N. (2021). Modelling animal biodiversity using acoustic monitoring and deep learning. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1–7). IEEE.

Chen, Z., Gao, D., Sun, K., Zhao, X., Yu, Y., & Wang, Z. (2023). Densely connected networks with multiple features for classifying sound signals with reverberation. Sensors (Basel, Switzerland), 23(16), 7225. https://doi.org/10.3390/s23167225

Jeantet, L., & Dufourq, E. (2023). Improving deep learning acoustic classifiers with contextual information for wildlife monitoring. Ecological Informatics, 77(102256), 102256. https://doi.org/10.1016/j.ecoinf.2023.102256

Rao, R., Montgomery, J., Garg, S., & Charleston, M. (2020). Bioacoustics data analysis – A taxonomy, sur-vey and open challenges. IEEE access: practical innovations, open solutions, 8, 57684–57708. https://doi.org/10.1109/access.2020.2978547

Lapp, S., Wu, T., Richards-Zawacki, C., Voyles, J., Rodriguez, K. M., Shamon, H., & Kitzes, J. (2021). Auto-mated detection of frog calls and choruses by pulse repetition rate. Conservation Biology: The Journal of the Society for Conservation Biology, 35(5), 1659–1668. https://doi.org/10.1111/cobi.13718

Mcloughlin, M. P., Stewart, R., & McElligott, A. G. (2019). Automated bioacoustics: methods in ecology and conservation and their potential for animal welfare monitoring. Journal of the Royal Society, Interface, 16(155), 20190225. https://doi.org/10.1098/rsif.2019.0225

Powers, D. M. W. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, marked-ness and correlation. arXiv [cs.LG]. https://doi.org/10.48550/ARXIV.2010.16061

Tiwari, V. (2010). MFCC and its applications in speaker recognition. International Journal on Emerging Technologies, 1(1), 19–22.

Vargas-Castro, L. E., Hernández-Ledezma, J., & Pérez-Gómez, G. (2024). Glass Frog Calls. Dataset. https://doi.org/10.5281/zenodo.14251255

Willacy, R. J., Mahony, M., & Newell, D. A. (2015). If a frog calls in the forest: Bioacoustic monitoring re-veals the breeding phenology of the endangered Richmond Range mountain frog (Philoria richmonden-sis). Austral Ecology, 40(6), 625–633. https://doi.org/10.1111/aec.12228

Xie, J., Zhu, M., Hu, K., Zhang, J., Hines, H., & Guo, Y. (2022). Frog calling activity detection using light-weight CNN with multi-view spectrogram: A case study on Kroombit tinker frog. Machine Learning with Applications, 7(100202), 100202. https://doi.org/10.1016/j.mlwa.2021.100202

Zheng, F., Zhang, G., & Song, Z. (2001). Comparison of different implementations of MFCC. Journal of Computer Science and Technology, 16(6), 582–589. https://doi.org/10.1007/bf02943243

Published

2025-04-01

How to Cite

Jiménez Oviedo, B. ., Oviedo Rodríguez, K. . ., Arroyo Hernández, J. ., & Mora Mora, F. . (2025). Fully Connected Neural Network for the Classification of Calls from Two Spe-cies of Glass Frogs. Revista CIENCIA Y TECNOLOGÍA, 21(1), 45-50. https://doi.org/10.17268/rev.cyt.2025.01.04

Issue

Section

Artículos Originales