Modelo de lógica difusa para evaluar préstamos en entidades financieras
DOI:
https://doi.org/10.17268/rev.cyt.2024.04.08Palavras-chave:
lógica difusa, préstamo personal, riesgo crediticioResumo
Las entidades financieras disponen de una gran cantidad de información sobre cómo actúan los clientes y su historial crediticio, estos datos en su forma bruta no resultan útiles para tomar decisiones acertadas requiriéndose un sistema preciso para diferenciar entre clientes solventes y aquellos con riesgo de impago. Esta investigación tuvo como propósito crear un modelo de lógica difusa para minimizar el riesgo crediticio en los préstamos personales en instituciones financieras. Se diseño un conjunto de base de reglas difusas básicas para proporcionar un marco en el cual se pueden utilizar los conocimientos expertos y datos para la modelización de riesgos. El estudio se ejecutó utilizando un diseño preexperimental, con una evaluación antes y después de la intervención en un único grupo. Se utilizó una muestra de 358 clientes extraída de una población de 5000 clientes de un dataset proporcionado por la plataforma Kaggle. En esta investigación, se desarrolló un modelo de evaluación de solicitudes de préstamos personales que utiliza lógica difusa utilizando Python para que sirva como soporte de decisiones para determinar la solvencia crediticia de los solicitantes. El modelo se validó en términos de precisión y eficiencia.
Referências
Arutjothi, G., & Senthamarai, C. (2023). Credit Risk Analysis Using Fuzzy Logic with Machine Learning Models. International Journal for Multidisciplinary Research (IJFMR), V(3), 1-7. doi:https://doi.org/10.36948/ijfmr.2023.v05i03.3298
Bennouna, G., & Tkiouat, M. (2018). Fuzzy logic approach applied to credit scoring for microfinance in Morocco. Procedia Computer Science, CXXVII, 274-283. doi:10.1016/j.procs.2018.01.123
Blahun, I. S., Blahun, I. I., & Blahun, S. I. (2020). Assessing the stability of the banking system based on fuzzy logic methods. Banks and Bank Systems, XV(3), 171-183. doi:http://dx.doi.org/10.21511/bbs.15(3).2020.15
Brkic, S., Hodzic, M., & Dzanic, E. (2017). Fuzzy Logic Model of Soft Data Analysis for Corporate Client Credit Risk Assessment in Commercial Banking. Fifth Scientific Conference with International Participation “Economy of Integration” ICEI 2017, (págs. 1-10). Tuzla· Bosnia and Herzegovina. Obtenido de https://ssrn.com/abstract=3079471
Díaz Córdova, J. F., Cobá Molina, E., & Navarrete López, P. (2017). Fuzzy logic and financial risk. A proposed classification. Contaduría y Administración, LXII(5), 1687-1703. doi:https://doi.org/10.1016/j.cya.2017.10.001
Ginting, S., Risman, M. R., Ginting, Y., & Skom, S. (2020). The Application of Fuzzy Logic Method in the Debtors Eligibility Assessment System of Microfinance Institution. IOP Conference Series: Materials Science and Engineering, DCCCLXXIX, págs. 1-8. doi:0.1088/1757-899X/879/1/012039
Ikuomola, A. J., & Falade, F. V. (2020). DEVELOPMENT OF FUZZY EXPERT DECISION SUPPORT SYSTEM FOR MORTGAGE. African Journal of Science & Nature, XI, 13-22. Obtenido de https://journals.oouagoiwoye.edu.ng/v2/index.php/AJSN/article/view/303
Kaggle. (2022). Kaggle. Obtenido de https://www.kaggle.com/datasets/luisenriquesguerrero/creditos-personales-actualizado
Kin, T. Y., Aizam, A. H., Hasan, S. A., Ariffin, A. F., & Mahat, N. (2021). Bankruptcy Prediction Model with Risk Factors using Fuzzy Logic Approach. Journal of Computing Research and Innovation (JCRINN), VI(2), 102-110. doi:https://doi.org/10.24191/jcrinn.v6i2.220
Latinovic, M., Dragovic, I., Arsic, V., & Petrovic, B. (2018). A Fuzzy Inference System for Credit Scoring using Boolean Consistent Fuzzy Logic. International Journal of Computational Intelligence Systems, XI(1), 411427. doi:10.2991/ijcis.11.1.31
Maraj, E., & Kuka, S. (2019). Credit Risk Assessment using Fuzzy Logic. Journal of Multidisciplinary Engineering Science and Technology (JMEST), VI(6), 10239-10242. Obtenido de https://www.jmest.org/wp-content/uploads/JMESTN42352980.pdf
Medina, S., & Paniagua, G. (2008). Modelo de inferencia difuso para estudio de crédito. Dyna, LXXV (154), 215-229. doi:https://doi.org/10.5709/ce.1897-9254.270. Obtenido de http://www.redalyc.org/articulo.oa?id=49615421
Paganoti Fonseca, D., Fernandes Wanke, P., & Correa, H. L. (2020). A two-stage fuzzy neural approach for credit risk assessment in a. Applied Soft Computing Journal, XCII, 1-12. doi:https://doi.org/10.1016/j.asoc.2020.106329
Palamarchuk, O. (2020). THE USE OF FUZZY LOGIC WHILE MODELING THE CREDITWORTHINESS OF LEGAL ENTITIES. Green, Blue & Digital Economy Journal, I(2), 57-61. doi:https://doi.org/10.30525/2661-5169/2020-2-11
Saeed, S. K., & Hagras, H. (2019). A Fraud-Detection Fuzzy Logic Based System for the Sudanese Financial Sector. SUST Journal of Engineering and Computer Science (JECS),, XX(1), 17-30. Obtenido de https://core.ac.uk/download/pdf/323246006.pdf
Salih, A., & Hagras, H. (2018). Towards a Type-2 Fuzzy Logic Based System for Decision Support to Minimize Financial Default in Banking Sector. 10th Computer Science and Electronic Engineering (CEEC),, (págs. 46-49). Colchester, UK. doi:10.1109/CEEC.2018.8674212
Soto, Ana. (2004). Desarrollo de un sistema de inferencia difuso para la evaluación de crédito por parte de una empresa prestadora de servicios. Dyna, LXXI (143), 25-36. doi:https://doi.org/10.5709/ce.1897-9254.270. Obtenido de http://www.redalyc.org/articulo.oa?id=49614303
Tomasz, K. (2018). The implementation of fuzzy logic in forecasting financial ratios. Contemporary Economics, XII(2), 165-188. doi:https://doi.org/10.5709/ce.1897-9254.270
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado