Modelamiento de bloques en 3D de un yacimiento de cobre mediante Python
DOI:
https://doi.org/10.17268/rev.cyt.2024.04.04Palavras-chave:
Python, modelamiento de bloques, yacimientoResumo
Este estudio de investigación tuvo como objetivo realizar un modelamiento de bloques en 3D de un yacimiento de cobre utilizando el lenguaje de programación Python. La metodología fue no experimental, realizando una búsqueda sistemática bibliográfica de tesis, artículos, talleres de contenido relevante, obteniendo como resultado una base de datos de un modelo de bloques. Al ejecutar la base de datos, se realizó cortes en los tres ejes, permitiendo obtener caracteres de cada bloque como la ley de cobre de 0.172%, 0.305% y 0.194% en el eje X, Y, y Z respectivamente. La segmentación espacial reveló la existencia de 76 secciones en el eje X, 56 en el eje Y, y 34 en el eje Z. Se concluyó que Python permite analizar y visualizar el modelamiento de bloques en 3D, permitiendo una identificación precisa de las leyes de cobre en función de su ubicación geoespacial.
Referências
Bele, S. (2018). 3D Geological Modeling in Mineral Deposits (Copper Ore Body Cases). European Scientific Journal, 14(15). http://dx.doi.org/10.19044/esj.2018.v14n15p1.
Bullejos, M., y Martín, M. (2023). 3D Visualization of geological structures using Python: the case study of the Palomeque sheets (SE, Spain), Journal of Maps, 19(1). https://doi.org/10.1080/17445647.2023.2282593
Deng, H., Zheng, Y., Chen, J., Yu, S., Xiao, K., y Mao, X. (2022). Learning 3D mineral prospectivity from 3D geological models using convolutional neural networks: Application to a structure-controlled hydrothermal gold deposit. Computers & Geosciences, 161. https://doi.org/10.1016/j.cageo.2022.105074
Farahbakhsh, E., Hezarkhani, A., Eslamkish, T., Bahroudi, A., y Chandra, R. (2020). 3DWofE: An open-source software package for three-dimensional weights of evidence modelling. Software Impacts, 6. https://doi.org/10.1016/j.simpa.2020.100039
Farahbakhsh, E., Hezarkhani, A., Eslamkish, T., Bahroudi, A., y Chandra, R. (2020). Three-dimensional weights of evidence modelling of a deep-seated porphyry Cu deposit. Geochemistry: Exploration, Environment, Analysis, 20, 480-495. https://doi.org/10.1144/geochem2020-038
Fu, Y., Cheng, Q., Jing, L., Ye, B., y Fu, H. (2023). Mineral Prospectivity Mapping of Porphyry Copper Deposits Based on Remote Sensing Imagery and Geochemical Data in the Duolong Ore District, Tibet. Remote Sensing, 15(2), 439. https://doi.org/10.3390/rs15020439
Gjorgjiev, L., Serafimovski, T., y Jovanov, K. (2020). 3D modeling of the borov dol porphyry copper deposit, republic of north Macedonia. Geologica Macedonica, 34(1), 67–82. https://doi.org/10.46763/GEOL
Lavoué, A., Arndt, N., McBride, J., Mordret, A., Brenguier, F., Boué, P., Courbis, R., Beauprêtre, S., Beard, C., Hollis, D. y Lynch, R. (2020). Ambient Noise Rayleigh and Love Wave Tomography beneath the Sally Palladium Copper Deposit (Ontario, Canada). Near Surface Geoscience Conference & Exhibition, 2020, 1-5. https://doi.org/10.3997/2214-4609.202020128
Litang, H., Zhang, M., Zhengqiu, Y., Yong, F., Jixiu, L., Hongliang, W., Lubale, C. (2020). Estimating dewatering in an underground mine by using a 3D finite element model. PLoS ONE 15(10). https://doi.org/10.1371/journal.pone.0239682
Liu, Y., Carranza, E., y Xia, Q. (2022). Developments in Quantitative Assessment and Modeling of Mineral Resource Potential: An Overview. Natural Resources Research, 31(4). https://doi.org/10.1007/s11053-022-10075-2
Lupari, M., Pesce, A., González, M., Leiva, F., Nacif, S., Álvarez, O., Giménez, M., La Vecchia, J., y Folguera, A. (2018). Modelado gravimétrico 3D de la corteza superior de la subcuenca Palauco y alrededores, sur de Mendoza. Revista de la Asociación Geológica Argentina 75(4), 584-591.
Mery, N., y Marcotte, D. (2022). Quantifying Mineral Resources and Their Uncertainty Using Two Existing Machine Learning Methods. Math Geosci 54, 363–387. https://doi.org/10.1007/s11004-021-09971-9
Mu, Y., y Salas, J.C. (2023). Data-Driven Synthesis of a Geometallurgical Model for a Copper Deposit. Processes, 11(6), 1775. https://doi.org/10.3390/pr11061775
Nwaila, G.T., Zhang, S.E., y Bourdeau, J.E. Spatial Interpolation Using Machine Learning: From Patterns and Regularities to Block Models. Nat Resour Res. https://doi.org/10.1007/s11053-023-10280-7
Real, I., Reich, M., Simón, A., Deditius, A., Barra, F., Rodríguez Mustafa, M., Thompson, J., y Malcolm, R. (2023). Formation of giant iron oxide‑copper‑gold deposits by superimposed episodic hydrothermal pulses. Commun Earth Environ, 2, 192. https://doi.org/10.1038/s41598-023-37713-w
Real, I., Thompson, J., y Carriedo, J. (2018). Lithological and structural controls on the genesis of the Candelaria-Punta del Cobre Iron Oxide Copper Gold district, Northern Chile. Ore Geology Reviews, 102, 106-153. https://doi.org/10.1016/j.oregeorev.2018.08.034
Tao, M., Batty, C., Fiume, E., y Levin, D. (2019). Mandoline: Robust Cut-Cell Generation for Arbitrary Triangle Meshes. ACM Trans Graph, 38(6). https://doi.org/10.1145/3355089.3356543
Zhang, S., Nwaila, G., y Bourdeau, J. (2023). Delineación de límites de geodominios basada en aprendizaje automático: un estudio de prueba de concepto que utiliza datos de Witwatersrand Goldfields. Nat Resour Res 32, 879–900. https://doi.org/10.1007/s11053-023-10159-7
Zhou, Y., Wang, J., Zuo, R., Xiao, F., Shen, W., y Wang, S. (2023). Machine learning, deep learning and Python language in field of geology. SciEngine, 34 (11), 3173 – 3178. https://doi.org/10.0000/3be5380fa52b48eba9c6d39be9fd6e54
Zhou, Z.Y. (2020). The Application of Python in the Teaching of Mathematical Geology. Creative Education Studies, 8(6), 884-890. https://doi.org/10.12677/CES.2020.86146
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado