Study of Thermal Performance of Vaccum-Tube for Solar Water Heaters Adapted for Peruvian Coastal Scenario

Authors

DOI:

https://doi.org/10.17268/scien.inge.2025.03.01

Keywords:

Solar Energy, Vacuum-Tube Solar Water Heater, Tilt Angle, Geographical Location

Abstract

The present research aimed to theoretically determine the arrangements of evacuated tubes, considering both tilt angle and inter-tube spacing, that maximize the total annual energy collection for five Peruvian coastal cities. The parameters considered included tube dimensions, azimuthal orientation, tilt angle, and inter-tube spacing. To perform a parametric study of the total solar energy captured by a single evacuated tube, varying the tilt angle for each of the 365 days of the year, the spacing between tubes, and the geographic location of five coastal Peruvian cities, a mathematical model was implemented in Matlab/Octave. The results show that maximum solar energy collection is achieved with tilt angles between 0° and 15° and a relative spacing between tubes equal to twice the outer diameter. Furthermore, it was demonstrated that the optimal operating tilt angles of evacuated tubes depend on the specific city in which they are installed. Unlike commercial systems, tubes arranged at a 15° tilt can capture greater amounts of energy without compromising their thermal conversion through the thermosiphon effect.

References

Bracamonte, J., Parada, J., Dimas, J., & Baritto, M. (2015). Effect of the collector tilt angle on thermal effi-ciency and stratification of passive water in glass evacuated tube solar water heater. Applied Energy, 155, 648–659. https://doi.org/10.1016/j.apenergy.2015.06.010

Budihardjo, I. (2005). Evacuated tubular solar water heaters (Tesis doctoral, University of New South Wales, Sidney, Australia).

Bergmann, J., Vinke, K., Fernández-Palomino, C., Gornott, C., Gleixner, S., Laudien, R., Lobanova, A., Ludescher, J., & Schellnhuber, H. (2021). Assessing the evidence: Climate change and migration in Peru. Potsdam Institute for Climate Impact Research (PIK) & International Organization for Migration (IOM).

Da Silva, B., Saccol, F., Caetano, N., Pedrazzi, C., & Caetano, N. (2017). Technical and economic viability for the briquettes manufacture. Defect and Diffusion Forum, 380, 218–226. https://doi.org/10.4028/www.scientific.net/DDF.380.218

Duffie, J. A., Beckman, W. A., & Blair, N. (2020). Solar engineering of thermal processes, photovoltaics and wind (4.ª ed.). John Wiley & Sons.

Handoyo, E., Ichsani, D., & Prabowo, A. (2013). The optimal tilt angle of a solar collector. Energy Procedia, 32, 166–175. https://doi.org/10.1016/j.egypro.2013.05.022

Hassan, Z., Mahmood, M., Ahmed, N., Saeed, M. H., Khan, R., Abbas, M. M., Abdelsalam, E. (2023). Tech-no‐economicassessmentofevacuatedflat‐plate solar collector system for industrial process heat. SCI, 2185-2201. https://doi.org/10.1002/ese3.1447

Huang, Y., & Wu, Y. (2023). Short-term photovoltaic power forecasting based on a novel auto former mod-el. Symmetry, 15(2), 238. https://doi.org/10.3390/sym15020238

Klunk, M., Shah, Z., Caetano, N., Conceição, R., Wander, P., Dasgupta, S., & Das, M. (2020). CO₂ sequestra-tion by magnesite mineralisation through interaction of Mg-brine and CO₂: Integrated laboratory exper-iments and computerised geochemical modelling. International Journal of Environmental Studies, 77(4), 492–509. https://doi.org/10.1080/00207233.2020.1715505

Marinca, V., & Herisanu, N. (2020). Construction of analytic solutions to axisymmetric flow and heat trans-fer on a moving cylinder. Symmetry, 12(8), 1335. https://doi.org/10.3390/sym12081335

Rabl, A. (1985). Active solar collectors and their applications (1.ª ed.). Oxford University Press.

Ruoso, A., Bitencourt, L., Sudati, L., Klunk, M., & Caetano, N. (2019). New parameters for the forest bio-mass waste Eco firewood manufacturing process optimization. Periodico The Quimica, 16(32), 560–571.

Sadeghi, G., Pisello, A., Safarzadeh, H., Poorhossein, M., & Jowzi, M. (2020). On the effect of storage tank type on the performance of evacuated tube solar collectors: Solar radiation prediction analysis and case study. Energy, 198, 117331. https://doi.org/10.1016/j.energy.2020.117331

Schumann, J., Schiebler, B., & Giovannetti, F. (2021). Performance evaluation of an evacuated tube collec-tor with a low-cost diffuse reflector. Energies, 14(21), 8209. https://doi.org/10.3390/en14218209

Tang, R., Gao, W., Yu, Y., & Chen, H. (2009). Optimal tilt-angles of all-glass evacuated tube solar collectors. Energy, 34(9), 1387–1395. https://doi.org/10.1016/j.energy.2009.04.002

Togun, H., Hamidatou, S., Mohammed, H., Abed, A., Hasan, H., Homod, R., Al-Fatlawi, A., Al-Thamir, M., & Abdulrazzaq, T. (2023). Numerical simulation on heat transfer augmentation by using innovative hy-brid ribs in a forward-facing contracting channel. Symmetry, 15(3), 690. https://doi.org/10.3390/sym15030690

Urbano, E. (2020). Análisis, diseño energético y control de una terma solar de tubos al vacío de 150 litros adaptada a condiciones climáticas del norte costero del Perú (Tesis de maestría, Universidad Nacional de Trujillo, Perú).

Venturini, M., Bageston, J., Caetano, N., Peres, L., Bencherif, H., & Schuch, N. (2018). Mesopause region temperature variability and its trend in southern Brazil. Annales Geophysicae, 36, 301–310. https://doi.org/10.5194/angeo-36-301-2018

Zang, H., Guo, M., Wei, Z., & Sun, G. (2013). Determination of the optimal tilt angle of solar collectors for different climates of China. Sustainability, 8(7), 654. https://doi.org/10.3390/su8070654

Published

2025-10-04

How to Cite

Leiva Calvanapón, Y. R. ., & Mendoza Orbegoso, E. M. . (2025). Study of Thermal Performance of Vaccum-Tube for Solar Water Heaters Adapted for Peruvian Coastal Scenario. SCIÉNDO INGENIUM, 21(3), 9-21. https://doi.org/10.17268/scien.inge.2025.03.01

Issue

Section

Artículos Originales