Impact of PM2,5 Particulate Matter on Air Quality Due to the Burning of Saccharum officinarum in Laredo, Trujillo-Peru
DOI:
https://doi.org/10.17268/rev.cyt.2025.01.10Keywords:
Sugarcane burning, PM2,5 particulate matter, sugarcane, WRF, modeling, CalpuffAbstract
This study analyzes the impact of PM2.5 particulate matter generated by the burning of Saccharum officinarum hectares in Laredo between 2017 and 2022. Meteorological data were obtained using the WRF model with a 1 km resolution, covering Trujillo and the Pacific Ocean. The WRF results were validated through comparison with observed data, showing high correlation and predictive capability. The dispersion of PM2.5 was simulated using the Calpuff model from the Environmental Protection Agency (EPA), validated with data from controlled burns and various burning scenarios. The analyses showed maximum PM2.5 concentrations in areas near emission sources, exceeding Environmental Quality Standards (EQS). This was particularly evident between June and November due to south-southeast winds and subsidence inversion conditions. In 2021, critical days exhibited calm wind conditions. Regarding emissions, the burning of 3 hectares generated a moderate air quality index for 60.47% of the receptors. In contrast, the burning of 6 and 9 hectares reached the caution threshold, affecting 32.56% and 43.41% of the receptors, respectively.
References
Adegboye, O. (2022). "Field Burning Fallout: Quantifying PM2:5 Emissions from Sugarcane Fires." Environ-mental Health Perspectives, 130(8), 10–11.https://doi.org/10.1289/EHP11533
Agroindustria Laredo. (2021). "Memoria del Directorio y del Gerente General de la Compañía, Año 2021. https://www.agroindustriallaredo.com/wp-content/uploads/2022/03/Memoria_Directorio_2021.pdf
Alfaro, G. C. A. (2020). “Alteración de la calidad del aire por quema de caña de azúcar (Saccharum Offici-narum L) En Casa Grande, La Libertad.” Universidad Nacional Agraria La Molina, 119. https://repositorio.lamolina.edu.pe/handle/20.500.12996/4488
Amin ul, H., Qaiser, N., Amjad, F., Naseem, I., Mansoor, A., Ali Muhammad, R., & Khan Sadaf, S. (2021). "Earth Science & Climate Change Sensitivity Analysis of calpuffModel: Application Over Complex Terrain." J Earth Sci Clim Change, an Open Access Journal, 12(5), 2157–7617. https://ftp.ncep.noaa.gov/data/nccf/com/
Arbex, M. A., Martins, L. C., De Oliveira, R. C., Pereira, L. A. A., Arbex, F. F., Cançado, J. E. D., Saldiva, P. H. N., & Braga, A. L. F. (2007). "Air pollution from biomass burning and asthma hospital admissions in a sugar cane plantation area in Brazil." Journal of Epidemiology and Community Health, 61(5), 395–400. https://doi.org/10.1136/jech.2005.044743
Avolio, E., Federico, S., Miglietta, M. M., Lo Feudo, T., Calidonna, C. R., & Sempreviva, A. M. (2017). "Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: An experimental campaign." Atmospheric Research, 192(December 2016), 58–71. https://doi.org/10.1016/j.atmosres.2017.04.003
Campbell, P. C. (2018). "Updates to the Noah Land Surface Model in WRF ‐ CMAQ to Improve Simulated Meteorology, Air Quality, and Deposition." Journal of Advances in Modeling Earth Systems. https://doi.org/10.1029/2018MS001422
Cipagauta, C., Mendoza, B., & Zavala-Hidalgo, J. (2014). "Sensitivity of the surface temperature to changes in total solar irradiance calculated with the WRF model." Geofisica Internacional, 53(2), 153–162. https://doi.org/10.1016/s0016-7169(14)71497-7
Dancé, J., & Sáenz, D. (2016). "La cosecha de caña de azúcar: Impacto económico, social y ambiental." USMP, Dirección de Investigación. Perú: FCCEF, 1–18. https://www.usmp.edu.pe/contabilidadyeconomia/images/pdf/investigacion/cosecha.pdf
FAO. (2023). "OCDE-FAO Perspectivas Agrícolas 2023-2032. https://www.oecd.org/es/publications/2023/07/oecd-fao-agricultural-outlook-2023-2032_859ba0c2.html
Guevara, T., Fau, K., Tueros, G., Luis, L., Benancio, R., & Teofila, G. (2021). "RESOLUCIÓN DE PRESI-DENCIA EJECUTIVA N° 053-2021-SENAMHI/PREJ Lima, 29 de octubre de 2021 VISTOS: https://www.senamhi.gob.pe/load/file/00701SENA-1377.pdf
Guo, D., Wang, R., & Zhao, P. (2020). "Spatial distribution and source contributions of PM 2 . 5 concentrations in." Atmospheric Pollution Research, 11(8), 1281–1289. https://doi.org/10.1016/j.apr.2020.05.004
Hanna, S., & Chang, J. (2012). "Acceptance criteria for urban dispersion model evaluation." Meteorology and Atmospheric Physics, 116(3–4), 133–146. [https://doi.org/10.1007/s00703-011-0177-1
Holmes, C. D., & Nowell, H. K. (2023). "Impacts of Sugarcane Fires on Air Quality and Public Health in South Florida’"." Environmental Health Perspectives, 131(2), 28002. https://doi.org/10.1289/EHP12800
Holnicki, P., Kałuszko, A., & Trapp, W. (2016). "An urban scale application and validation of the Calpuff model." Atmospheric Pollution Research, 7(3), 393–402. https://doi.org/10.1016/j.apr.2015.10.016
Hong, S. Y., Noh, Y., & Dudhia, J. (2006). "A new vertical diffusion package with an explicit treatment of entrainment processes." Monthly Weather Review, 134(9), 2318–2341. https://doi.org/10.1175/MWR3199.1
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). "Radiative forcing by long-lived greenhouse gases : Calculations with the AER radiative transfer models." https://doi.org/10.1029/2008JD009944
Jurado, A. O. A. (2020). Regulación ambiental y la quema de caña de azúcar en el distrito de La Huaca, Piura [Tesis de maestría, Universidad de San Martín de Porres]. Repositorio USMP. https://repositorio.usmp.edu.pe/handle/20.500.12727/8166
Johnson, J. B. (2022). An Introduction to Atmospheric Pollutant Dispersion Modelling. Environmental Sciences Proceedings, 19(18). https://doi.org/10.3390/ecas2022-12826
Luo, T., Lakshmanan, P., Zhou, Z., Deng, Y., Deng, Y., & Yang, L. (2022). "REVIEW PERSPECTIVE OF SUGARCANE." 9(2), 272–283.
Madala, S., Satyanarayana, A. N. V., Srinivas, C. V., & Kumar, M. (2015). "Mesoscale atmospheric flow-field simulations for air quality modeling over complex terrain region of Ranchi in eastern India using WRF." Atmospheric Environment, 107, 315–328. https://doi.org/10.1016/j.atmosenv.2015.02.059
Mamunar Rashid, G., Touhid Hossain, M. M., Abdullah Elias Akhter, M., & K Mallik, M. A. (2022). Sensitivity of Radiation Schemes in the WRF-ARW Model to Predict Extreme Temperature Due to Heat Wave over Bangladesh. Journal Of Applied Physics (IOSR-JAP), 14(5), 21–33. https://doi.org/10.9790/4861-1405022133
OEFA. (2018). "Caña de azúcar: ruta hacia la cosecha en verde." https://www.gob.pe/institucion/oefa/informes-publicaciones/4207871-cana-de-azucar-ruta-hacia-la-cosecha-verde
OEFA. (2023). "Carta n° 04169-2023-oefa/rai. https://drive.google.com/drive/folders/1EFQ5iDPqin34imQMaewLRQeHGN-PYW99?usp=sharing
Scire, J. S., Strimaitis, D. G., & Yamartino, R. J. (2000). "A User’s Guide for the Calpuff Dispersion Model." Earth Tech. Inc, January, 521. http://www.src.com/Calpuff/download/Calpuff_UsersGuide.pdf
Silva, J. S., Rojas, J. P., Norabuena, M., & Seguel, R. J. (2018). "Ozone and volatile organic compounds in the metropolitan area of Lima-Callao, Peru." Air Quality, Atmosphere and Health, 11(8), 993–1008. https://doi.org/10.1007/s11869-018-0604-2
Segura, J. (24 de febrero de 2023). Ingenios azucareros crean Asociación Peruana de Agroindustriales del Azúcar y Derivados. Gestión. Recuperado de: https://gestion.pe/economia/midagri-nueva-variedad-de-cana-de-azucar-incrementara-en-un-80-el-nivel-de-cosecha-piura-lambayeque-ancash-lima-arequipa-noticia/
U.S. Environmental Protection Agency. (1995). Compilation of air pollutant emission factors (5th ed., Vol. I, p. 26). https://www.nrc.gov/docs/ML1607/ML16075A216.pdf
Villalobos Cabrera, M. H. (2017). Influencia de la quema de biomasa de caña de azúcar en la concentración de PM2.5 en el aire de la zona urbana de Laredo [Tesis de licenciatura, Universidad César Vallejo]. Repos-itorio UCV. https://repositorio.ucv.edu.pe/handle/20.500.12692/2251
Wilks,D., (2007). "Statistical methods in the atmospheric sciences, second edition." Meteorological Applications (Vol. 14, Issue 2). http://dx.doi.org/10.1002/met.16F
Pan, H.-L., & Wu, W.-S. (1995). Implementing a mass flux convection parameterization package for the NMC medium-range forecast model (Office Note No. 409). National Centers for Environmental Prediction (U.S.). https://repository.library.noaa.gov/view/noaa/11429
Zaidi, S. M., & Gisen, J. I. A. (2018). "Evaluation of Weather Research and Forecasting (WRF) Microphysics single moment class-3 and class-6 in Precipitation Forecast." MATEC Web of Conferences, 150, 10–13. https://doi.org/10.1051/matecconf/201815003007
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado