Time and particle size of Musa Sapientum shell on the adsorption of Cu and Pb in mining effluent

Authors

  • Hans Roger Portilla Rodríguez 1Escuela de Posgrado Doctorado en Ciencias e Ingeniería, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n – Ciudad Universitaria, Trujillo, Perú https://orcid.org/0000-0001-6014-9243
  • Martin Taboada Neira 2Departamento académico de Ingeniería Metalúrgica, Facultad de Ingeniería. Universidad Nacional de Trujillo Av. Juan Pablo II s/n – Ciudad Universitaria, Trujillo, Perú. https://orcid.org/0000-0003-4462-1012
  • Steysi Jamely Portilla Jauregui 3Escuela de Arquitectura y Urbanismo. Facultad de Arquitectura. Universidad Privada del Norte, Trujillo-Perú https://orcid.org/0009-0007-4355-8003
  • Juan Antonio Vega Gonzalez 2Departamento académico de Ingeniería Metalúrgica, Facultad de Ingeniería. Universidad Nacional de Trujillo Av. Juan Pablo II s/n – Ciudad Universitaria, Trujillo, Perú. https://orcid.org/0000-0001-8413-8792
  • Aldo Roger Castillo Chung 2Departamento académico de Ingeniería Metalúrgica, Facultad de Ingeniería. Universidad Nacional de Trujillo Av. Juan Pablo II s/n – Ciudad Universitaria, Trujillo, Perú. https://orcid.org/0000-0002-2270-1671
  • Katherine Perez Rodas 4Escuela de Posgrado Maestría en Ciencias con Mención en Riesgos Ambientales https://orcid.org/0009-0003-2214-0450

DOI:

https://doi.org/10.17268/rev.cyt.2024.04.06

Keywords:

Mining efluente, heavy metals, solid waste, contact time, particle size

Abstract

The study focused on the reduction of solid waste, especially banana peels, and the treatment of effluents generated by mining, which contain heavy metals such as lead (Pb) and copper (Cu). It was observed that banana peel (Musa Sapientum) can be used to reduce the concentration of these metals in mining effluent discharges. The results showed a decrease in the concentrations of Pb and Cu, from 50,25 mg/L and 21,75 mg/L to 21,70 mg/L and 14,61 mg/L, respectively. The treatment time with banana peel increased the removal efficiency: treatment from 10 to 120 minutes improved the removal of copper (from 31,86% to 32,61%) and lead (from 53,96% to 56,26%). In addition, the particle size of the shell influenced the absorption capacity: the smaller the particle size (from 0,147 mm to 0,074 mm), the higher the absorption rates of both metals, reaching 32,66% absorption of copper and 55,80% of lead. The statistical results (ANOVA) indicated that both the particle size and the treatment time have a positive impact on the removal of these metals, with a p value less than 0,05. In conclusion, it is determined that the ideal treatment period is 120 minutes and the optimal particle size for the highest absorption of heavy metals is 0,074 mm.

References

Ahmad, T., Danish, M. (2018). Prospects of banana waste utilization in wastewater treatment: A review. Journal of Environmental Management, 206, 330–348. https://doi.org/10.1016/j.jenvman.2017.10.061

Ali, A., (2016). Removal of Mn (II) from water using chemically modified banana peels as efficient adsorbent. Environmental Nanotechnology, Monitoring and Management, 76, 1–30. https://doi.org/10.1016/j.enmm.2016.12.004

Anwar, J., Shafique, U., Waheed, W., Salman, M., Dar, A., Anwar, S. (2010). Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana. Bioresource Technology, 101, 1752–1755.

Bagali, S. S., Gowrishankar, B. S., Roy, A. S., (2017). Estudios de optimización, cinética y equilibrio sobre la eliminación de plomo (II) de una solución acuosa utilizando pseudotallo de plátano como adsorbente, 409-415. https://doi.org/10.1016/J.ENG.2017.03.024

Božić, D., Stanković, V., Gorgievski, M., Bogdanović, G., Kovačević, R. (2009). Adsorption of heavy metal ions by sawdust of deciduous trees. Journal of Hazardous Materials, 171, 684–692.

Ghassabzadeh, H., Torab-Mostaedi, M., Mohaddespour, A., Ghannadi Maragheh, M., Ahmadi, S. J., Zaheri, P. (2010). Adsorption characteristics of Pb (II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves. Desalination, 262, 174–182. https://doi.org/10.1016/j.desal.2010.05.028

https://doi.org/10.1016/j.biortech.2009.10.021

https://doi.org/10.1016/j.chemosphere.2019.04.198

https://doi.org/10.1016/j.jhazmat.2009.06.055

Jumbo, P., Nieto, D., (2014). Tratamiento químico y biológico de efluentes mineros cianurados a escala laboratorio. MASKANA, I+D+ingeniería, 2(01), 133–139. http://dspace.ucuenca.edu.ec/handle/123456789/21359

Lesley, J., Jun, B. M., Flora, J. R., Park, C. M., Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 149–159.

Marichelvam, M., Azhagurajan, A. (2018). Removal of mercury from effluent solution by using banana corm and neem leaves activated charcoal. Environmental Nanotechnology, Monitoring and Management, 178, 1–23. https://doi.org/10.1016/j.enmm.2018.08.005

Neris, B. J., Martinez, F. H., Paranhos da Silva, E. G., Garcia, F. (2019). Evaluation of adsorption processes of metal ions in multi-element aqueous systems by lignocellulosic adsorbents applying different isotherms: A critical review. Chemical Engineering Journal, 357, 404–420. https://doi.org/10.1016/j.cej.2018.09.125

Noeline, B. F., Manohar, D. M., Anirudhan, T. S. (2005). Kinetic and equilibrium modelling of lead (II) sorption from water and wastewater by polymerized banana stem in a batch reactor. Separation and Purification Technology, 45, 131–140. https://doi.org/10.1016/j.seppur.2005.03.004

Rani, K., Gomathi, T., Vijayalakshmi, K., Saranya, M., Sudha, P. N. (2019). Banana fiber cellulose nano crystals grafted with butyl acrylate for heavy metal lead (II) removal. International Journal of Biological Macromolecules, 461-472. https://doi.org/10.1016/j.ijbiomac.2019.03.064

Revista Nuevas Energías. (2020). Día Mundial del Agua. [En línea] http://revistanuevasenergias.com/2020/03/23/el-cuidado-del-agua-es-una-preocupacion-fundamental-del-sector-minero-afirmo-la-red-de-academicos-por-la-mineria-sustentable/ [Último acceso: 02 de Diciembre de 2024].

Sistema Nacional de Información Ambiental - SINIA. (2003). Concentración de plomo en zonas mineras 2003. [En línea] https://sinia.minam.gob.pe/documentos/concentracion-plomo-zonas-mineras-2003 [Último acceso: 02 de Diciembre de 2024].

Sistema Nacional de Información Ambiental - SINIA. (2017). Aprueban estándares de calidad ambiental (ECA) para agua y establecen disposiciones complementarias. [En línea] https://sinia.minam.gob.pe/normas/aprueban-estandares-calidad-ambiental-eca-agua-establecen-disposiciones [Último acceso: 02 de Diciembre de 2024].

Thuan,T. V., Phuong, B. T., Nguyen,T. D., Thanh, V. T., Giang, L. (2016). Response surface methodology approach for optimization of Cu²⁺, Ni²⁺ and Pb²⁺ adsorption using KOH-activated carbon from banana peel. Surfaces and Interfaces, 1–9. https://doi.org/10.1016/j.surfin.2016.10.007

Zhou, Y., Chen, H., Feng, Q., Yao, D., Chen, H., Wang, H., Zhou, Z., Li, H., Tian, Y., Lu, X. (2017). Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh banana peels. Journal of Cleaner Production, 165, 221–230. https://doi.org/10.1016/j.jclepro.2017.07.111

Zhou, Y., Zhang, L., Cheng, Z. (2015). Removal of organic pollutants from aqueous solution using agricultural wastes: A review. Journal of Molecular Liquids, 212, 739–762. https://doi.org/10.1016/j.molliq.2015.10.044

Published

2024-12-28

How to Cite

Portilla Rodríguez, H. R. ., Taboada Neira, M. ., Portilla Jauregui, S. J. ., Vega Gonzalez, J. A. ., Castillo Chung, A. R. ., & Perez Rodas, K. . (2024). Time and particle size of Musa Sapientum shell on the adsorption of Cu and Pb in mining effluent. Revista CIENCIA Y TECNOLOGÍA, 20(4), 73-85. https://doi.org/10.17268/rev.cyt.2024.04.06

Issue

Section

Artículos Originales