Optimization of Workflow Execution in Cloud Computing Environments
DOI:
https://doi.org/10.17268/rev.cyt.2024.04.01Keywords:
Optimization of computational workflows, Hybrid cloud computing, Academic digitalization in the cloud, Digital transformationAbstract
This study focused on the digitization of critical processes at the National University of Trujillo (UNT), specifically in the issuance of certificates with digital signature and graduation procedures, selected for their academic relevance. A hybrid system of private cloud and server cluster was implemented, using a quasi-experimental design with a control group and an experimental group. Statistical analysis was performed with Student's t-tests and Mann-Whitney tests, using Minitab software. Statistically, a sample of 30 measurements was used, which is sufficient for the sample distribution of the mean to approximate a normal distribution as in this case, which was useful for applying the T-Student test. The results showed a significant reduction in processing times. In the issuance of certificates with digital signature, the average time decreased from 10.94 days to 2.21 days, and in graduation procedures, from 51.08 days to 27.98 days. In addition, user satisfaction increased from 2 to 4 in both processes. The results support the effectiveness of cloud computing in the digital transformation of academic processes at the Universidad Nacional de Trujillo, which can serve as a model for other institutions in the field.
References
Deng, K., Ren, K., Zhu, M., & Song, J. (2015). A data and task co-scheduling algorithm for scientific cloud workflows. IEEE Transactions on Cloud Computing, 1–1. https://doi.org/10.1109/tcc.2015.2511745
Miao, Y. (2022). University educational administration management platform integrating distributed real-time cloud computing system. Mathematical Problems in Engineering, 2022, Article ID 1378931, 12 páginas. https://doi.org/10.1155/2022/1378931
Oland, M. A., & Niculescu, V. (2022). Case management versus workflow systems in healthcare. Applied Medical Informatics. https://ami.info.umfcluj.ro/index.php/AMI/article/view/904
Pandey, S., Karunamoorthy, D., & Buyya, R. (2011). Workflow engine for clouds. En Cloud Computing (pp. 321–344). https://doi.org/10.1002/9780470940105.ch12
Raghavan, S., Sarwesh, P., Marimuthu, C., & Chandrasekaran, K. (2015). Bat algorithm for scheduling workflow applications in cloud. En 2015 International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV). https://doi.org/10.1109/edcav.2015.7060555
Tang, W., & Yang, S. (2023). Enterprise digital management efficiency under cloud computing and big data. Sustainability. https://www.mdpi.com/2071-1050/15/12/9380
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado