Environmental bioremediation of soils contaminated by mining: bibliometric analysis

Authors

Keywords:

biorremediation, soil, VosViewer, Bibliometrix

Abstract

The objective of the research was to analyze the evolution, characteristics, and relationships of research in environmental bioremediation of soils contaminated by mining in a period from 2001 to 2024, using VosViewer and Bibliometrix. The results obtained indicated that China is the most productive country with emphasis in areas such as: phytoremediation; followed by Spain which concentrates its research in bioremediation and soils. With co-occurrence analysis, 3 clusters were visualized, one of bioremediation technologies and processes, strategies and challenges of soil remediation, and microbiology and biotechnology in bioremediation. Phytoremediation is considered a core theme, soil, is a declining theme, phragmites australis is a niche theme and the driving themes are translocation factor, acid mine drainage and bioremediation. It was observed that from 2001 to 2013 phytoremediation and bioremediation studies stand out, from 2013 to present phytoremediation, heavy metals and bioremediation studies stand out. Research on environmental bioremediation in soils contaminated by mining is of greater importance since 2007. In conclusion, the study of environmental bioremediation of soils caused by mining is a topic for future research.

References

Arruda, H., Renato, E., Lessa, M., Proenca, D., & Bartholo, R. (2022). VOSviewer and Bibliometrix. National Library of Medicine, 110(3), 392-395. doi:https://doi.org/10.5195/jmla.2022.1434

Bartholo, R. (2021). VOSviewer and Bibliometrix. Journal of the Medical Library Association. doi:https://dx.doi.org/10.5195/jmla.2022.1434.

Campos, L., Orellana, C., & Carrasco, G. (2017). Características de la producción científica de la Revista INVI en la era SciELO. Biblios, 67, 2009-2016. doi:https://doi.org/10.5195/biblios.2017.348

Cañedo, R., Rodríguez, R., & Montejo, M. (2010). Scopus: la mayor base de datos de literatura científica arbi-trada al alcance de los países subdesarrollados. Revista Cubana de ACIMED 2010, 2010(3), 270-282.

De la cueva, S., Rodríguez, C., Cruz, N., Contreras, J., & Miranda, J. (2016). Changes in Bacterial Populations during Bioremediation of Soil Contaminated with Petroleum Hydrocarbons. Water, Air, and Soil Pollution, 227(3). doi:https://doi.org/10.1007/s11270-016-2789-z

Guerin, T. (2022). The effect of interactions between soil compaction and phenol contamination on plant growth characteristics: Implications for scaling bioremediation at industrial sites. Journal of Environmental Management, 30(15). doi:https://doi.org/10.1016/j.jenvman.2021.114017

Lebrun, M., Michel, C., Joulian, C., Morabito, D., & Bourgerie, S. (2021). Rehabilitation of mine soils by phytostabilization: Does soil inoculation with microbial consortia stimulate Agrostis growth and metal(loid) immobilization? Science of the Total Environment, 791(148400). doi:https//doi.org/10.1016/j.scitotenv.2021.148400

Lebrun, M., Michel, C., Joulian, C., Morabito, D., & Bourgerie, S. (2021). Rehabilitation of mine soils by phytostabilization: Does soil inoculation with microbial consortia stimulate Agrostis growth and metal(loid) immobilization? Science of the Total Environment, 791(148400). doi:https://doi.org/10.1016/j.scitotenv.2021.148400

Lebrun, M., Nandillon, R., Miard, F., Le Forestier, L., Morabito, D., & Bourgerie, S. (2021). Effects of biochar, ochre and manure amendments associated with a metallicolous ecotype of Agrostis capillaris on As and Pb stabilization of a former mine technosol. Environmental Geochemistry and Health, 43(4), 1491-1505. doi:https://doi.org/10.1007/s10653-020-00592-5

Li, Y., Lin, H., Gao, P., Yang, N., Xu, R., Sun, X., . . . Sun, W. (2022). Synergistic Impacts of Arsenic and Antimony Co-contamination on Diazotrophic Communities. Microbial Ecology, 84(1), 44-58. doi:https//doi.org/10.1007/s00248-021-01824-6

Marrugo , J., Durango-Hernández, J., Díaz-Fernández, L., Urango, I., Araméndiz, H., Vergara, V., . . . Díez, S. (2020). Transfer and bioaccumulation of mercury from soil in cowpea in gold mining sites. Chemosphere, 250(126142). doi:https://doi.org/10.1016/j.chemosphere.2020.126142

Montilla, L. (2016). Analysis of the scientific production of articles of Journal Tropical Zootecnia of the Na-tional Institute for Agricultural Research. Biblios, 65, 2006-2013. doi:http://dx.doi.org/10.5195/bi-blios.2016.315

Schmidt, M. (2008). The Sankey Diagram in Energy and Material Flow Management. J. Ind. Ecol, 12, 82-94.

Tang, C., Zhong, J., Lyu, Y., Zhang, M., Sun, J., & Liu, X. (2021). Research progress of uranium contaminated soil remediation technology. Huagong Jinzhan/Chemical Industry and Engineering Progress, 40(8), 4587-4599. doi:https://doi.org/10.16085/j.issn.1000-6613.2020-1923

Wang, F., Li, W., Wang, H., Hu, Y., & Cheng, H. (2024). The leaching behavior of heavy metal from contaminated mining soil: The effect of rainfall conditions and the impact on surrounding agricultural lands(Article). Science of the Total Environment, 914(169877). doi:https://doi.org/10.1016/j.scitotenv.2024.169877

Wang, L., Xie, X., Li, Q., Yu, Z., Hu, G., Wang, X., & Liu, J. (2022). Accumulation of potentially toxic trace elements (PTEs) by native plant species growing in a typical gold mining area located in the northeast of Qinghai-Tibet Plateau. Environmental Science and Pollution Research, 29(5), 6990-7000. doi:https://doi.org/10.1007/s11356-021-16076-7

Zhao, X., Yang, Z., & Yu, T. (2023). Review on heavy metal pollution and remediation technology in the soil of mining areas. Geology in China, 50(1), 84-101. doi:https://doi.org/10.12029/gc20220702001

Published

2024-05-28

How to Cite

Cotrina-Teatino, M. A., Rondo-Layza, L. O., Marquina-Araujo, J., & Martínez Díaz, R. M. (2024). Environmental bioremediation of soils contaminated by mining: bibliometric analysis. Revista CIENCIA Y TECNOLOGÍA, 20(2), 77-85. Retrieved from https://revistas.unitru.edu.pe/index.php/PGM/article/view/5950

Issue

Section

Artículos Originales