Application of spatial data mining based on aggregation techniques to detect tra-ffic congestion levels in the city of Trujillo

Authors

  • José Arturo Díaz-Pulido Facultad de Ciencias Físicas y Matemáticas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n – Ciudad Universitaria, Trujillo, Perú. https://orcid.org/0000-0003-2596-698X

DOI:

https://doi.org/10.17268/rev.cyt.2024.02.01

Keywords:

traffic density, spatial data mining, clustering, k-means, dbscan

Abstract

The analysis of vehicular traffic in the road network of the city of Trujillo detected critical points with the greatest influx of vehicles, determining a computational model (Figure 8) using random values to detect vehicular traffic congestion in the road network of the city of Trujillo. For the management and analysis of spatial data mining, the CRISP-DM methodology was used, applying unsupervised learning, because the data are random and simulated in real time, which allowed the use of classification clustering techniques with k-means and dbscan algorithms, and as a result the spatial location of the nodes with a level of congestion was obtained, deducing the possible incidences or eventualities that occur in them at vehicular level, as is the case of speed, time, capacity at each node. The k-means and dbscan clustering algorithms were compared to validate the computational model, using the k-means and Silhouette averaging techniques, respectively.

References

Alvarenga-Rodríguez, J. M., & Alvarenga-Rodríguez, J. M. (2021). Estudio comparativo entre la velocidad y la densidad en modelos macroscópicos del tráfico vehicular incorporando la variable espacial en la velocidad. Revista de Matemática Teoría y Aplicaciones, 28(1), 125-142. https://doi.org/10.15517/RMTA.V28I1.41890

Chakraborty, S., Nagwani, N. K., & Dey, L. (2014). Performance Comparison of Incremental K-means and Incremental DBSCAN Algorithms. International Journal of Computer Applications, 27(11), 14-18. https://doi.org/10.5120/3346-4611

Epstein, J. M. (2020). Why Model?

Espinosa-Zúñiga, J. J., & Espinosa-Zúñiga, J. J. (2020). Aplicación de metodología CRISP-DM para seg-mentación geográfica de una base de datos pública. Ingeniería, investigación y tecnología, 21(1), 1-13. https://doi.org/10.22201/FI.25940732E.2020.21N1.008

Geppino Pucci Lorenzo Cazzador, C., & Andrea Pietracaprina, C. (2023). Studio e implementazione di den-sity clustering DBSCAN approssimato. https://thesis.unipd.it/handle/20.500.12608/53312

Hernández González, O. (s. f.). Aproximación a los distintos tipos de muestreo no probabilístico que exis-ten. Recuperado 2 de abril de 2024, de http://www.revmgi.sld.cu/index.php/mgi/article/view/907

Introduction to Computational Science: Modeling and Simulation for the ... - Angela B. Shiflet, George W. Shiflet - Google Libros. (s. f.). Recuperado 2 de abril de 2024, de https://books.google.es/books?hl=es&lr=&id=UZApAgAAQBAJ&oi=fnd&pg=PP1&dq=model+computational+computer+science&ots=kttLqVhWSH&sig=vHTJUCRRCZwYCHDKVuj-VApiYHk#v=onepage&q=model%20computational%20computer%20science&f=false

Moreira, J. S., León, C. C., Zambrano, G. R., Mercado, C., & Joel, J. (2020). Parámetros que influyen en el congestionamiento vehicular [ Parameters influencing in the vehicular overcrowding ]. International Journal of Innovation and Applied Studies, 24(4), 1440-1455. http://www.ijias.issr-journals.org/

Syakur, M. A., Khotimah, B. K., S Rochman, E. M., -, al, Jian, S., Li, D., & Yu, Y. (2021). Research on Taxi Operation Characteristics by Improved DBSCAN Density Clustering Algorithm and K-means Cluster-ing Algorithm. Journal of Physics: Conference Series, 1952(4), 042103. https://doi.org/10.1088/1742-6596/1952/4/042103

Tan, P.-N., Steinbach, M., & Pearson, V. K. (2019). Introduction to Data Mining. www.pearsoned.co.uk

Yang, Q., Yue, Z., Chen, R., Zhang, J., Hu, X., & Zhou, Y. (2019). Real-time detection of traffic congestion based on trajectory data. The Journal of Engineering, 2019(11), 8251-8256. https://doi.org/10.1049/JOE.2019.0872

Published

2024-05-28

How to Cite

Díaz-Pulido, J. A. (2024). Application of spatial data mining based on aggregation techniques to detect tra-ffic congestion levels in the city of Trujillo. Revista CIENCIA Y TECNOLOGÍA, 20(2), 11-37. https://doi.org/10.17268/rev.cyt.2024.02.01

Issue

Section

Artículos Originales