Removal of ibuprofen and amoxicillin in domestic wastewater using activated carbon soaps and moringa seed powder at the laboratory level

Authors

  • José L. Paredes Facultad de Recursos Naturales Renovables, Universidad Nacional Agraria de la Selva, Carretera Central-Km 1.21 – Ciudad Universitaria, Tingo María, Perú. https://orcid.org/0000-0002-6431-4768
  • Guillermo D. Evangelista Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n –Ciudad Universitaria, Trujillo, Perú. https://orcid.org/0000-0002-1955-6565

DOI:

https://doi.org/10.17268/rev.cyt.2024.01.05

Keywords:

Activated carbon, Moringa seeds, Ibuprofen, Amoxicillin, Domestic wastewater

Abstract

This research was done to determine the effect of using soaps with activated carbon and moringa seed powder on the concentration of ibuprofen and amoxicillin in domestic wastewater. The soaps were prepared with transparent commercial glycerin, adding the adsorbents at a rate of 0.1 g/g of soap. The residual water was prepared in the laboratory and characterized, then ibuprofen and amoxicillin were added at a concentration of 3 mg/L each. In the experiments, the soaps were added individually and combined to 1 liter of residual water, in three weight percentages: 5%, 15% and 25%. The combined application of soap with activated charcoal and 25% moringa seed powder was the best treatment with removal of 81.33% and 80% of ibuprofen and amoxicillin, respectively. This treatment was applied to actual domestic wastewater from the wastewater outlet to the Huallaga River in Tingo María-Huánuco-Perú, which was characterized and 72.3% and 69.7% of ibuprofen and amoxicillin were removed, respectively. Through a Tukey test, it was verified that there is a significant difference with a confidence interval of 95%, between the treatments applied in a real residual water and an artificial one.

References

Al-Kindi, GY, Al-Haidri, H. (2021). La Eliminación de Residuos de Drogas Ibuprofen de Aguas Residuales Municipales por Semillas de Moringa Oleifera. Diario de Ingeniería Ecológica, 22 (1), 83-94. https://doi.org/10.12911/22998993/128868

Álvarez, S., Ovejero, G. & García, J. (2017). Eliminación de los contaminantes emergentes de las aguas residuales. Investigación y Ciencia.

Anchique, L., Alcázar, J. J., Ramos-Hernández, A., Méndez-López, M., Mora, J. R., Rangel, N., Márquez, E. (2021). Predicting the Adsorption of Amoxicillin and Ibuprofenon Chitosan and Graphene Oxide Materials: A Density Functional Theory Study. Polymers, 13(10), 1620. https://doi.org/10.3390/polym13101620

Atugoda, T., Vithanage, M., Wijesekara, H., Bolan, N., Sarmah, A. K., Bank, M. S., You, S., & Ok, Y. S. (2021). Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environment international, 149, 106367. https://doi.org/10.1016/j.envint.2020.106367

Betancourt-Aguilar, Carmen, Mello-Prado, Renatode, Castellanos-Gonzáles, Leónides, & Silva-Campos, Cid N. (2016). Características de la glicerina generada en la producción de biodiesel, aplicaciones generales y su uso en el suelo. Cultivos Tropicales, 37(3), 7-14. https://dx.doi.org/10.13140/RG.2.1.4329.2403

Castro, J., Paz, S., Mena, N., Urresta, J., y Machuca-Martinez, F. (2019). Evaluation of heterogeneous catalytic ozonation process for diclofenac degradation in solutions syn- thetically prepared. Environmental Science and Pollution Research International, 26(5), 4488-4497. https://doi.org/10.1007/s11356-018-2582-1

Cervantes, S. P., Londoño, Y. A., Roa Gutiérrez, F., & Peñuela, G. A. (2017). Evaluación de humedales artificiales de flujo subsuperficial en la remoción de diferentes concentraciones de ibuprofeno empleando Cyperus papyrus. Tecnología Y Ciencias Del Agua, 8(5), 105 - 116. https://doi.org/10.24850/j-tyca-2017-05-07

Ciesielczyk, F., Żółtowska-Aksamitowska, S., Jankowska, K., Zembrzuska, J., Zdarta, J., Jesionowski, T.(2019). The role of novel lignosulfonate-based sorbent in a sorption mechanism of active pharmaceutical ingredient: batch adsorption tests and interaction study. Adsorption 25 (4), 865–880

Ebeshi Benjamin U, Oseni Kehinde E., Ahmadu Augustine A., Oluwadiya James O. (2009). Comparative utilization of visual, potentiometric titrations and UV spectro- photometric methods in the determination of Ibuprofen. African Journal of Pharmacy and Pharmacology, 3(9) (2009) 426-431.

Iannacone, J., & Alvariño, L. (2009). Evaluacion del riesgo acuatico de siete productos farmaceuticos sobre Daphnia magna. Ecología Aplicada, 8(1-2), 71+. https://link.gale.com/apps/doc/A220202877/IFME?u=uesan&sid=IFME&xid=b22664f8

Jjemba P. K. (2006). Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicology and environmental safety, 63(1), 113–130. https://doi.org/10.1016/j.ecoenv.2004.11.011

Kalantary, RR, Jamshidi, A., Mofrad, MMG, Jafari, AJ, Heidari, N., Fallahizadeh, S., Arani, MH, Torkashvand, J. (2021) Efecto de la pandemia de COVID-19 en la gestión de desechos médicos: un estudio de caso. J. Medio Ambiente. Ciencias de la Salud Ing. 19, 831–836.

Long, FA, Nutting, GC y Harkins, WD (1937). La tensión superficial de las soluciones acuosas de jabón en función de los iones de hidrógeno (pH) y la concentración de sal. I. Laurato de sodio y nonilato de sodio. Revista de la Sociedad Química Estadounidense, 59(11), 2197–2203. doi:10.1021/ja01290a032

Macías, A., García, J., Carrasco, J.P., Segura, R. (2019). Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters. Sustainability, 11(9), 2672, https://doi.org/10.3390/su11092672

Mansouri, F., Chouchene, K., Roche, N., Ksibi, M. (2021). Eliminación de productos farmacéuticos del agua mediante procesos de adsorción y oxidación avanzada: estado del arte y tendencias. Ciencias Aplicadas, 11 (14), 6659. http://dx.doi.org/10.3390/app11146659

Mansouri, H., Carmona, R. J., Gomis-Berenguer, A., Souissi-Najar, S., Ouederni, A., & Ania, C. O. (2015). Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons. Journal of Colloid and Interface Science, 449, 252–260. https://doi.org/10.1016/j.jcis.2014.12.020

Martín, C., Martín, G., García, A., Fernández, T., Hernández, E. y Puls, J. (2013). Po- tenciales aplicaciones de Moringa oleifera. Una revisión crítica. Pastos y Forrajes, 36(2), 137+. https://link.gale.com/apps/doc/A448138228/IFME?u=uesan&sid=IFME&xid=3b35070 d.

Metcalf & Eddy (2003). Wastewater Engineering, Treatment and Reuse (4a ed.). McGraw-Hill.

Mirzaei, R., Yunesian, M., Nasseri, S., Gholami, M., Jalilzadeh, E., Shoeibi, S., & Mesdaghinia, A. (2018). Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. The Science of the total environment, 619-620, 446–459. https://doi.org/10.1016/j.scitotenv.2017.07.272

Natarajan, R., Saikia, K., Ponnusamy, S. K., Rathankumar, A. K., Rajendran, D. S., Venkataraman, S., … Vaidyanathan, V. K. (2022). Understanding the factors affecting adsorption of pharmaceuticals on different adsorbents – A critical literature update. Chemosphere, 287, 131958. https://doi.org/10.1016/j.chemosphere.2021.131958

Oba, S. N., Ighalo, J. O., Aniagor, C. O., & Igwegbe, C. A. (2021). Removal of ibuprofen from aqueous media by adsorption: A comprehensive review. Science of The Total Environment, 780, 146608. https://doi.org/10.1016/j.scitotenv.2021.146608

ONU. Agua medicada: el consumo moderno de fármacos se convierte en un desafío ambiental. (2018, 06 de agosto). https://www.unep.org/es/noticias-y-reportajes/reportajes/agua-medicada-el-consumo-moderno-de-farmacos-se-convierte-en- un#:~:text=%22Solo%20nueve%20de%20118%20productos,%25%22%2C%20dice%2 0el%20informe.

Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman Jr., C.U., Mohan, D. (2019). Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem. Rev. 119, 3510–3673.

Patiño, Y., Díaz, E. y Ordóñez, S. (2014). Microcontaminantes emergentes en aguas: Tipos y sistemas de tratamiento. Avances En Ciencias e Ingeniería, 5(2), 1-20.

Petrovic, M., de Alda, MJL, Díaz-Cruz, S., Postigo, C., Radjenovic, J., Gros, M., Barceló, D. (2009). Destino y eliminación de productos farmacéuticos y drogas ilícitas en plantas de tratamiento de aguas residuales convencionales, biorreactores de membrana y por filtración de ribera. Filosofía Trans. R. Soc. Matemáticas. física Ing. ciencia 367, 3979–4003.

Reddy, D.H.K., Ramana, D.K.V., Seshaiah, K., Reddy, A.V.R. (2011). Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination 268 (1-3), 150-157. https://doi.org/10.1016/j.desal.2010.10.011.

Sandoval, J.A., Morales Granados, M.A., Rubio, D. (2020). Breve revisión del uso de microalgas para la remoción de contaminantes emergentes en aguas residuales. Gestión y Ambiente 23(1). DOI: https://doi.org/10.15446/ga.v23n1.84034.

Silva, J. C., Morante, L., Moreno, C. J., Cuizano, N. A., Navarro, A. E., & Llanos, B. P. (2018). Mejora De Las Propiedades Adsorptivas De Biomateriales Mediante Modificaciones Químicas en La Eliminación De Antibióticos. Revista de La Sociedad Química Del Perú, 84(2), 183–196. https://doi-org.esan.idm.oclc.org/10.37761/rsqp.v84i2.140

Sincero, AP y Sincero, GA (2003). Tratamiento físicoquímico de aguas y aguas residuales CRC. Press.

Szabo, RK; Megyeri, C.; Illés, E.; Gajda-Schrantz, K.; Mazellier, P.; Dombi, A.(2011). Fototransformación de ibuprofeno y ketoprofeno en soluciones acuosas. Chemosphere 84, 1658–1663.

Tavares, F.O., Pinto, L.A.D., Bassetti, F.D., Vieira, M.F., Bergamasco, R., Vieira, A.M.S. (2017). Environmentally friendly biosorbents (husks, pods and seeds) from Moringa oleifera for Pb(II) removal from contaminated water. Environ. Technol. 38 (24), 3145-3155. https://doi.org/10.1080/09593330.2017.1290150.

Urbina, J. A. J., & Solano, J. A. V. (2020). Los contaminantes emergentes de las aguas residuales de la industria farmacéutica y su tratamiento por medio de la ozonización/Wastewater treatment of the pharmaceutical industry through the ozone technique. Informador Tecnico, 84(2), 90+. https://link.gale.com/apps/doc/A632329472/IFME?u=uesan&sid=IFME&xid=eaad3c02

Wang, J., Chu, L., Wojnárovits, L., & Takács, E. (2020). Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. The Science of the total environment, 744, 140997. https://doi.org/10.1016/j.scitotenv.2020.140997

Yoshida H, Yamazaki J, Ozawa S, Mizukoshi T, Miyano H (2009) Advantage of LC- MS metabolomics methodology targeting hydrophilic compounds in the studies of fermented food samples. Journal of Agricultural and Food Chemistry 57(4),1119-1126. https://doi.org/10.1021/jf803235m

Published

2024-03-08

How to Cite

Paredes, J. L., & Evangelista, G. D. (2024). Removal of ibuprofen and amoxicillin in domestic wastewater using activated carbon soaps and moringa seed powder at the laboratory level. Revista CIENCIA Y TECNOLOGÍA, 20(1), 63-74. https://doi.org/10.17268/rev.cyt.2024.01.05

Issue

Section

Artículos Originales