Influence of the diffusive term on the modeling of two-dimensional (2D) wave propagation of the law of conservation of mass with constant convective flow velocity
Keywords:
Convection, Diffusion, Finite Differences, Newman Boundary ConditionAbstract
In this work, the 2D Convection - Diffusion equation was used to model the process of contaminant transport by convection and diffusion. In particular, we assume that we are modeling this pollutant transport process in shallow water and with a unidirectional flow movement in the convective part. The diffusion coefficient is considered constant and depends only on the nature of the substance, a value of 0.004 has been considered. Finite difference numerical schemes are applied to a domain in the XY plane, with side 1. The developed numerical model could be used to predict the distribution of polluting material. The value of the diffusion coefficient strongly influences the step size in time (dt) and the speed values that we give to the convective flow. A faster movement of the contaminant in the direction of the resultant of the convective flow was appreciated, as well as a decrease in the speed of the diffusion process when the local concentration levels decreased and therefore moving only by convection.
References
Comin, D., and Nanda, R. (2019). Financial development and technology diffusion. IMF Economic Review, 67(2), 395-419.
Granik, N., Weiss, L., Nehme, E., Levin, M., Chein, M., Perlson, E., ... and Shechtman, Y. (2019). Single-par ticle diffusion characterization by deep learning. Biophysical journal, 117(2), 185-192.
Habingabwa, M., Ndahayo, F., and Berntsson, F. (2012). Air pollution tracking using pdes. Rwanda Jour-nal, 27, 63-69.
Hutomo, G.; Kusuma, J.; Ribal, A.; Mahie, A. and Aris, N. (2019). Numerical solution of 2-d advection-diffusion equation with variable coefficient using du-fort frankel method. In Journal of Physics: Confer-ence Series (Vol. 1180, No. 1, p. 012009). IOP Publishing.
Hundsdorfer, W. H., Verwer, J. G., & Hundsdorfer, W. H. (2003). Numerical solution of time-dependent ad-vection-diffusion-reaction equations (Vol. 33, pp. x+-471). Berlin: Springer.
Lax, P. (1973). Hyperbolic systems of conservation laws and the mathematical theory of shock waves. So-ciety for Industrial and Applied Mathematics.
Mailler, S., Pennel, R., Menut, L., and Lachâtre, M. (2020). Using an antidiffusive transport scheme in the vertical direction: a promising novelty for chemistry-transport models. Geoscientific Model Devel-opment Discussions.
Moin, P. (2010). Fundamentals of engineering numerical analysis. Cambridge University Press. 235 pp.
Oliveira, F., Ferreira, R., Lapas, L., and Vainstein, M. (2019). Anomalous diffusion: A basic mechanism for the evolution of inhomogeneous systems. Frontiers in Physics, 7, 18.
Polyanin, A., Sorokin, V., and Vyazmin, A. (2018). Reaction-diffusion models with delay: some proper-ties, equations, problems, and solutions. Theoretical Foundations of Chemical Engineering, 52(3), 334-348.
Rubin, H. and Atkinson J. (2001). Environmental fluid mechanics. CRC Press. 721 pp.
Won, Y. and Ramkrishna, D. (2019). Revised formulation of Fick’s, Fourier’s, and Newton’s laws for spatial-ly varying linear transport coefficients. ACS omega, 4(6), 11215-11222.
Xue, T., Su, H., Han, C., Jiang, C., and Aanjaneya, M. (2020). A novel discretization and numerical solver for non-fourier diffusion. ACM Transactions on Graphics (TOG), 39(6), 1-14.
Zhang, J., and Centola, D. (2019). Social networks and health: New developments in diffusion, online and offline. Annual Review of Sociology, 45(1), 91-109.
Downloads
Published
How to Cite
Issue
Section
License
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado