Modeling the distribution of a liquid contaminant using the diffusion equation in two dimensions
Keywords:
Diffusion, Finite differences, Boundary conditionsAbstract
In this work, the 2D-diffusion equation is used to model the diffusion process of a pollutant in calm and shallow waters. The diffusion coefficient was considered spatially constant and only dependent on the nature of the substance. The idea and the numerical schemes (forward difference, backward difference and center difference) were applied to a domain in the XY plane of sideways 1, where the distribution of the contaminant can be seen. Neumann boundary conditions equal to zero or zero flow at the boundary have been used, in order to make a cut at said boundary for the modeling. The computational program carried out allows moving the contaminant source to any point of the domain and seeing its distribution in real time, it is also possible to add other contaminant sources and observe their diffusion. As the value of the contaminant concentration decreases over time, a slowdown in the speed of the wave is observed; the modeling allows monitoring the distribution of the contaminant for all time. Therefore, the developed numerical model can be used to predict the distribution of contaminants in liquids.
References
Andallah, L.; Khatun, M. 2020. Numerical solution of advection-diffusion equation using finite difference schemes. Bangladesh Journal of Scientific and Industrial Research, 55(1): 15-22.
Comin, D.; Nanda, R. 2019. Financial development and technology diffusion. IMF Economic Review, 67(2): 395-419.
Granik, N.; Weiss, L.; Nehme, E.; Levin, M.; Chein, M.; Perlson, E.; ... Shechtman, Y. 2019. Single-particle diffusion characterization by deep learning. Biophysical journal, 117(2): 185-192.
Habingabwa, M.; Ndahayo, F.; Berntsson, F. 2012. Air pollution tracking using pdes. Rwanda Journal, 27: 63-69.
Hutomo, G.; Kusuma, J.; Ribal, A.; Mahie, A.; Aris, N. 2019. Numerical solution of 2-d advection-diffusion equation with variable coefficient using du-fort frankel method. In Journal of Physics: Conference Series (Vol. 1180, No. 1, p. 012009). IOP Publishing.
Lax, P. 1973. Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Socie-ty for Industrial and Applied Mathematics. 59 pp.
Mailler, S.; Pennel, R.; Menut, L.; Lachâtre, M. 2020. Using an antidiffusive transport scheme in the vertical direction: a promising novelty for chemistry-transport models. Geoscientific Model Development Discus-sions, 1-21.
Moin, P. 2010. Fundamentals of engineering numerical analysis. Cambridge University Press. 235 pp.
Oliveira, F.; Ferreira, R.; Lapas, L.; Vainstein, M. 2019. Anomalous diffusion: A basic mechanism for the evolution of inhomogeneous systems. Frontiers in Physics, 7: 18.
Polyanin, A.; Sorokin, V.; Vyazmin, A. 2018. Reaction-diffusion models with delay: some properties, equa-tions, problems, and solutions. Theoretical Foundations of Chemical Engineering, 52(3): 334-348.
Rubin, H. and Atkinson J. 2001. Environmental fluid mechanics. CRC Press. 721 pp.
Won, Y.; Ramkrishna, D. 2019. Revised formulation of Fick’s, Fourier’s, and Newton’s laws for spatially varying linear transport coefficients. ACS omega, 4(6): 11215-11222.
Xue, T.; Su, H.; Han, C.; Jiang, C.; Aanjaneya, M. 2020. A novel discretization and numerical solver for non-fourier diffusion. ACM Transactions on Graphics (TOG), 39(6): 1-14.
Zhang, J.; Centola, D. 2019. Social networks and health: New developments in diffusion, online and offline. Annual Review of Sociology, 45(1): 91-109.
Downloads
Published
How to Cite
Issue
Section
License
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado