Application of the Fourier Transform in the determination of diffrac-tion patterns in quasicrystals

Authors

  • Rolando J. Alva Zavaleta Facultad de Ciencias Naturales y Matemática, Universidad Nacional del Callao, Av. Juan Pablo II s/n – Ciudad Universita-ria, Bellavista, Callao, Perú.

Abstract

In this research work the X-rays or electrons quasicrystalline diffraction pattern of a scaled star dodecahedron has been simulated. For this purpose, the fast Fourier transform has been applied to a mass density function that describes the three-dimensional structure constructed from the use of unit cells. Both the network points, the density function, as well as the Fourier fast transform, have been encoded in Fortran programming language. The result is the diffraction pattern with a third-order and fifth-order axis of symmetry, the latter characteristic of quasicrystals icosahedral.

References

Alva, R. 2013. Simulación computacional del patrón de difracción de un cluster cuasicristalino corre-spondiente a un dodecaedro estrella escalado. Tesis de Maestría, Pontificia Universidad Católica del Perú, Lima. Perú.121pp.

Vardeny, Z.; Nahata, A.; Agrawal, A. 2013. Optics of photonic quasicrystals. Nature Photonics 7: 177-187.

Cerna, E. 2008, Modelo de Cluster dodecaedro estrella escalado para cuasicristales icosaédricos. Tesis de Maestría, Pontificia Universidad Católica del Perú, Lima. Perú. 101 pp.

Duneau, M.; Katz, A. 1985.Quasiperiodic patterns. Physical Review Letters 54: 2688−2691.

Jeong, C. 2007. Growing Perfect Decagonal Quasicrystals by Local Rules. Physical Review Letters 98: 135501.

Jiang, K.; Zhang, P. 2014. Numerical methods for quasicrystals. Journal of Computational Physics 256: 428-440.

Kauppinen, J.; Partanen, J. 2001. Fourier Transforms in spectroscopy. Editorial Wiley‐VCHVerlagGmbH. Berlin, Alemania. 267 pp.

Levine, D.; Steinhard, P. 1984. Quasicrystals: a new class of ordered structures. Physical Review Letters 53: 2477.

Markoli, B.; Bončina, T; Zupanič, F. 2010. TEM investigations of icosahedral quasicrystal in Al-based alloys. Microscopy: Science, Technology, Applications and Education 3: 1853-1859.

Press, W.; Teukolsky, S.; Vetterling, W.; Flannery, B. 1992. Numerical recipes in Fortran 77. 2da Edición. Editorial Cambridge University Press. New York, United States of America. 973 pp.

Gratias, D.; Quiquandon, M. D. 2019. Discovery of quasicrystals: The early days, Comptes Rendus Physique 20: 803-819.

Shechtman, D.M.; Blech, I.; Gratias D.; Cahn J.W. 1984. ¨Metallic Phase with Long-Range Orientational Orden and No Translational Symmetry¨. Physical Review Letters 53: 1951-1953.

Steurer, W. 2012.Why are quasicrystals quasiperiodic? Chemical Society Reviews 41: 6719−6729.

Yamamoto, A. 2008. Software package e for structure analysis of quasicrystal. Science and Technology Advanced Materials 9: 1-14

Published

2022-06-29

How to Cite

Alva Zavaleta, R. J. . (2022). Application of the Fourier Transform in the determination of diffrac-tion patterns in quasicrystals. Revista CIENCIA Y TECNOLOGÍA, 18(2), 157-167. Retrieved from https://revistas.unitru.edu.pe/index.php/PGM/article/view/4590

Issue

Section

Artículos Originales