Mathematical optimization for economic agents

Authors

  • Rosa María Requelme Ibáñez Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores S/N, Tacna Perú
  • Carlos Abel Reyes Alvarado Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores S/N, Tacna Perú.
  • Jorge Luis Lozano Cervera Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores S/N, Tacna Perú

Keywords:

Mathematical Optimization, Mathematical Tool, Economic Agents

Abstract

This article aims to make mathematical tools available to economic agents to strengthen their activities. In recent years, optimization techniques, so useful in microeconomic theory, have been expand to incorporate more powerful differential and topological methods, these methods have led to new results on the qualitative behavior of general economic and political systems. The simplest and most common way to describe a company's technology is the production function. However there are other ways of describing company technologies that are more general and more useful in certain settings. In this sense, the rapidity with which changes are taking place in our society are additives that immerse us in the era of automation, for example the "just in time”, production technique is implanting in the business sector the culture of "total quality". The need to improve costs to grow leads to the application of mathematical tools. Thus, in this research we propose tools: (i) The Kuhn - Tucker theorem, (ii) The maximum theorem, (iii) The envelope theorem, together with an application of these.

References

Anton, H.; Rorres, C. 2013. El ejemplo del método numérico. Numerical Methods. Elementary Linear Algebra. Disponible en: https://www.academia.edu/33145536/_Howard_Anton_Chris_Rorres_Elementary_Linear_Alg_BookZZ_org_pdf?email_work_card=view-paper.

Bonifaz, F.; Lama, R. 2013. Optimización dinámica y teoría económica. 1era Edition. Editorial centro de Investigación de la Universidad del Pacífico. Lima, Perú. 217 pp.

Cerdá, J. 2013. Weierstrass i l’aproximació uniforme. Butlletí de la Societat Catalana de Matemàtiques 85: 62-76.

Herrera, P.; Ballestero, G. 2019. Análisis de la cualificación de las restricciones en el teorema de Kuhn-Tucker. Revista de Investigación en Modelos Matemáticos aplicados a la Gestión y la Economía. 34: 26-39.

Herrera, P.; Ballestero, G. 2019. El ejemplo analítico. Revista de Investigación en Modelos Matemáticos aplicados a la Gestión y la Economía. Disponible en: http://www.economicas.uba.ar/wp-content/uploads/2016/04/Herrera-Ballestero.pdf.

Jehle G.; Philip R. 2011. Advanced Microeconomic Theory: Editorial British Library Cataloguing. 3era Edition. Ashford, Great Britain. 673 pp.

Karlsson, M.; Ygge, F.; Andersson, A. 2007. Market-based Approaches to Optimization. School of Mathematics and Systems Engineering. 21: 16-18.

Levie, R. 2004. Advanced Excel for Scientific Data Analysis: Editorial Congress Cataloging. New york, United States of America. 630 pp.

Varian, H. 1992. Microeconomic analysis: Editorial Congress Cataloging. 3ra Edition. Editorial Nortón & Company. New york, United States of America. 559 pp.

Schofield, N. 2013. Mathematical Methods in Economics and Social Choice: Editorial Saint Louis. 2da Edition. Missouri, United States of America. 269 pp.

Published

2021-08-31

How to Cite

Requelme Ibáñez, R. M., Reyes Alvarado, C. A. ., & Lozano Cervera, J. L. (2021). Mathematical optimization for economic agents. Revista CIENCIA Y TECNOLOGÍA, 17(3), 81-89. Retrieved from https://revistas.unitru.edu.pe/index.php/PGM/article/view/3836

Issue

Section

Artículos Originales