Levels of anticorrosive protection in marine atmosphere provided by coatings with low environmental impact

Authors

  • Joel Herradda Villanueva Facultad de Ingeniería, Universidad Nacional del Santa, Av. Universitaria s/n - Ciudad Universitaria, Nuevo Chimbote, Perú.
  • Pablo Aguilar Marín Facultad de Ciencias Físicas y Matemáticas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n – Ciu-dad Universitaria, Trujillo, Perú.

Keywords:

atmospheric corrosion, coating, environmental impact

Abstract

In this work, the levels of anticorrosive protection provided by coatings with low environmental impact on ASTM A 131-01 steel plates, exposed to the marine atmosphere of Chimbote, Peru, have been studied. Plates of dimensions 100x150x3 mm, without and with coatings of alkyd, acrylic, epoxy and siloxane type, were exposed at a distance of 250 m from the sea for three years and evaluated according to ISO 12944, ISO 8503-4, ISO 4628 standards. ISO 9223, SSPC-SP5, SSPC-PA1, SSPC-PA2, ASTM D 4541-09, SIS 05 5900, among others. Twenty-four coated plates have incisions 75 mm long and 0.5 mm wide. After three years of exposure, it was found that for the coated samples, the degree of blistering (ISO 4628-2), oxidation of the substrate (ISO 4628-3), corrosion and delamination around an incision (ISO 4628- 8), delamination distance from an incision (ISO 4628-8) were, respectively: a) alkyd coating 5 (S5), Ri5, Grade 4 and 14.35mm, b) acrylic coating 4 (S4), Ri3, Grade 2 and 1.93mm, c) epoxy coating 4 (S4), Ri4, Grade5 and 7.23mm, d) siloxane coating 2 (S2), Ri2, Grade1 and 0.25mm. The acrylic coatings based on water, epoxy and high solids Siloxane showed the best levels of anticorrosive protection.

References

Abdel and Madkour M. 2018. “Potential use of smart coatings for corrosion protection of metals and alloys: A review,” pp. 11–22.

Aguilar, P. y Chavez, M. 2003. Comportamiento en Atmósfera Marina de dos Recubrimientos Epóxicos. En 24º CONBRASCORR 4º Seminario de Revestimentos e Pintura. (4º: 2003: Rio de Janeiro, Brasil).

Albrecht, P. and Hall, T. 2003. Atmospheric corrosion resistance of structural steels. Materials in Civil Engi-neering 15(1): 2-24.

Almeida, E. 2002. Nuevas tecnologías de pinturas para acero. Protección anticorrosiva de metales en las atmósferas de Iberoamérica (Red Temática Pátina, XV.D/CYTED). Madrid.

Almeida, E., Santos, D. 2006. Anticorrosive painting for a wide spectrum of marine atmospheres: Environ-mental-friendly versus traditional paint systems. Progress in Organic Coatings 57(5): 11–22.

Ashida Y., Daigo Y, y Sugahara K. 2017. «An Industrial Perspective on Environmentally Assisted Cracking of Some Commercially Used Carbon Steels and Corrosion-Resistant Alloys», pp. 1381-1388.

ASTM D 4541, Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Tester, 1989.

Cadena, F., Irusta, L., Fernandez, M. 2013. Performance evaluation of alkyd coatings for corrosion protec-tion in urban and industrial environments, Progress in Organic Coatings 76, 1273– 1278.

Camejo J., Rigoberto M., y Domínguez J. 2018. «Apuntes sobre corrosión y protección contra la corrosión», pp. 5-13.

Domingo F. 2017. «Principios de la protección de estructuras metálicas en situación de corrosión y fuego.», Inst. Mex. Construcción en Acero. n° 55, p. 52.

Echeverría, M., Abreu, C., Lau, K., Echeverría, C. 2016. Viability of epoxy–siloxane hybrid coatings for pre-venting steel corrosion, Progress in Organic Coatings 92, 29–43.)

Elsner, C. 2003. New Developments in Anticorrosive Paints Protective Coatings. 8vo. Congreso Iberoameri-cano de Corrosión y Protección: 21-25

Fragata, F. 2002. La pintura como técnica de protección anticorrosiva. Protección anticorrosiva de metales en las atmósferas de Iberoamérica (Red Temát. Pátina, XV.D/CYTED). Madrid.

Herradda J., Luján G. y Mariños A. 2015. Proyecto de Investigación Depositación de iones Cl- y SO2 en el ambiente atmosférico de Chimbote

ISO 12944-2,3,4,8. 2005. Paints and varnishes. Corrosion protection of steel structures by protective paint systems. Classification of environments.

ISO 9223. 2012. Corrosión of Metals and Alloys Classification of corrosivity of Atmospheres.

Lyon, S.; Bingham, R., Mills, D. 2016. Advances in corrosion protection by organic coatings: What we know and what we would like to know, Progress in Organic Coatings

Leygraf, C. Odnevall, I. Wallinder, J. Tidblad, & Graedel, T. 2016. Atmospheric Corrosion, Wiley, Second Edition, New Jersey.

Mackay B., Jackson J., Melot D., Scheie J. y Vittonato J. 2016. «La corrosión: La lucha más extensa», Oilf. Rev. pp. 36-51.

Mills, D., and Jamali, S. 2017. Progress. In Organic. Coatings. 102, Part A, 8.

Momber A., Plagemann P. y Stenzel V. 2015. «Performance and integrity of protective coating systems for offshore wind power structures after three years under offshore site conditions», Renew. Energy, pp. 606-617.

Morcillo, M. 2002. Fundamentos sobre protección anticorrosiva de metales en la atmósfera. Protección anti-corrosiva de metales en las atmósferas de Iberoamérica (Red Temática Pátina, XV.D/CYTED). Madrid.

Sai S. and Ramanan R. 2016. “A study on corrosion resistant graphene films on low alloy steel,” Appl. Na-nosci., pp. 1175–1181.

Shifler, D. 2005. Understanding material interactions in marine environments to promote extended structural life. Corrosion Science 47(5): 2335-2352.

Steel Structures Painting manual. 1982. Good Painting Practice, System and Specifications SSPC. Pittsburgh.

Wenjuan Chen, Long Hao, Junhua Dong, Wei Ke. 2014. Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere, Corrosion Science 83: 155–163.

Published

2021-06-04

How to Cite

Herradda Villanueva, J., & Aguilar Marín, P. (2021). Levels of anticorrosive protection in marine atmosphere provided by coatings with low environmental impact. Revista CIENCIA Y TECNOLOGÍA, 17(2), 83-96. Retrieved from https://revistas.unitru.edu.pe/index.php/PGM/article/view/3564

Issue

Section

Artículos Originales