Gestión de un sistema de visión artificial para la detección de los daños causados por plagas en el cultivo de palto utilizando un drone
Keywords:
Visión Artificial, Algoritmo, OpenCV, Numpy, Machine LearningAbstract
La visión artificial es capaz de resolver problemas del sector agrícola, siendo uno de estos, el suministro de agroquímicos incorrectos por la deficiencia de identificar una plaga basada en la percepción visual, por ello esta investigación tiene como objetivo el desarrollo de un sistema de visión artificial que permita detectar con precisión las plagas bicho de cesto y arañita roja presentes en el cultivo de palto de una empresa agroindustrial; asimismo, proveer una serie de medidas correctivas para su tratamiento. Este estudio tuvo carácter exploratorio y descriptivo, a través de la observación, consulta e implementación de visión por computador con imágenes captadas por un drone Mavic2 Zoom, a su vez, se utilizó la plataforma Anaconda-Spyder (Python 3.6) y ciertas librerías, como: OpenCV, que contiene algoritmos para la detección de objetos y segmentación por color; Numpy, para el análisis matricial y Machine Learning, para su clasificación. Se determinó el algoritmo Random forest como el modelo de predicción adecuado para clasificar y verificar el estado de infestación de plagas en las hojas de palto, obteniendo un porcentaje promedio de precisión de 100%; por último, se implementó la visión artificial y se detectó la infestación de plagas bicho de cesto y arañita roja.References
Flórez, C.; Hurtado, D.; Sandoval, O. 2015. Procesamiento de imágenes para reconocimiento de daños causados por plagas en el cultivo de Begonia semperflorens (flor de azúcar). Acta Agronómica 64(3): 273-279.
Heras, D. 2017. Clasificador de imágenes de frutas basado en inteligencia artificial. Killkana Técnica 1(2): 21-30.
Husin, Z.; Shakaff, A.; Aziz, A.; Farook, R. 2012. Feasibility study on plant chili disease detection using image processing techniques. Third Int. Conf. Intelligent Syst. Modelling and Simulation (ISMS), p. 291–296.
Larcher, L.; Juárez, P.; Ruggeri, A.; Biasoni, E.; Cattaneo, C.; Villalba, G. 2013. Ponderación de calidad en frutas usando técnicas de visión artificial para la estimación de daños. Asociación Argentina de Mecánica Computacional Vol. XXXII, p. 2473-2484.
Montenegro, A.; Parada, C. 2015. Diseño e implementación de un sistema de detección de malezas en cultivos cundiboyacenses. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Programa de Ingeniería Electrónica y Telecomunicaciones. Bogotá, Colombia. Disponible en: https://repository.ucatolica.edu.co/bitstream/10983/3202/4/DISE%C3%91O%20E%20IMPLEMENTACI%C3%93N%20DE%20UN%20SISTEMA%20DE%20DETECCI%C3%93N%20DE%20MALEZAS%20EN%20CULTIVOS%20CUNDIBOYACENSES.pdf
Noda, K.; Ezaki, N.; Takizawa, H.; Mizuno, S.; Yamamoto, S. 2006. Detection of plant saplessness with image processing. International Joint Conference SICE–ICASE, p. 4856–4860.
Pydipati, R. 2004. Evaluation of classifiers for automatic disease detection in citrus leaves using machine vision (Doctoral dissertation, University of Florida).
Yan, L.; Chunlei, X.; Jang Myung, L. 2009. Vision–based pest detection and automatic spray of greenhouse plant. IEEE International Symposium on Industrial Electronics, p. 920–925.
Downloads
Published
How to Cite
Issue
Section
License
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado