Efecto de los tratamientos criogénicos en el desgaste y microestructura de los aceros ledeburíticos usados en las herramientas de conformado en frio – Revisión

Authors

  • Víctor Alcántara Facultad de Ingeniería, Universidad Nacional de Trujillo
  • Zeferíno Damián Departamento de Mecánica y Energía, Univ. Autónoma Metropolitana: Azcapotalco-México
  • Gilberto Alvarez Departamento de Mecánica y Energía, Univ. Autónoma Metropolitana: Azcapotalco-México

Keywords:

aceros ledeburiticos, tratamiento criogénico, desgaste, aceros para herramientas

Abstract

Se revisa el efecto de los tratamientos criogénicos sobre el desgaste y microestructura de los aceros ledeburiticos utilizados en las herramientas de conformado en frio. Se discuten las condiciones de tratamiento que contribuyen a mejorar la resistencia al desgaste de estas herramientas. La serie AISI D son aceros para herramientas con alto contenido de carbono y cromo, que exhiben buena dureza, tenacidad a la fractura y una alta resistencia al desgaste; propiedades básicas exigidas por las herramientas de conformado en frio. Lo mismo sucede con el acero ledeburitico PM/.Vanadis-6 que presenta cualidades similares. Se han seleccionados los aceros D2, D3,  D6 y Vanadis 6, como los aceros ledeburiticos representativos para esta revisión. El objetivo es señalar las mejoras obtenidas por los tratamientos criogénicos superficiales (SCT) y profundos (DCT), realizados bajo diversas condiciones de operación, para analizar y comparar su resistencia al desgaste haciendo un análisis de su microestructura.

References

Akhbarizadeh, A.; Shafyei, A.; Golozar, M. A. 2009. Effects of cryogenic treatment on wear behaviour of D6 tool steel. Mater Design 30: 3259–3264

Akhbarizadeh, A.; Golozar, M.; Shafeie, A.; Kholghy, M. 2009. Effects of Austenizing Time on Wear Beha-vior of D6 Tool Steel After Deep Cryogenic Treatment, J. Iron and steel research. international. 16(6): 29-32

Akincioğlu, S.; Gökkaya, H.; Uygur, I. 2015. A review of cryogenic treatment on cutting tolos, International Journal of Advanced Manufacturing Technology · June 2015. DOI: 10.1007/s00170-014-6755-x

Amini, K.; Akhbarizadeh, A.; Javadpour, S. 2012. Investigating the effect of holding duration on the micros-tructure of 1.2080 tool steel (AISI D3) during the deep cryogenic heat treatment, Vacuum 86: 1534 e1540

Amini, K.; Akhbarizadeh, A.; Jadavpur, S. 2012. Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behavior of D2 tool steel Journal of Minerals, Metallurgy, and Mate-rials 19: 795.

Amini, K.; Nategh, S.; Shafyei, A. 2010. Influence of different cryotreatments on tribological behavior of 80CrMo125 cold work tool steel, Mater. Des., 31: p.4666.

Arslan, Y.; Uygur, I.; Jazdzewska, A. 2015. The Effect of Cryogenic Treatment on Microstructure and Me-chanical Response of AISI D3 Tool Steel Punches, Manufacturing Science and Engineering, 137: 034501-1

Ather, S.; Sonawane, S. 2015. Wear Resistance Enhancement of AISI D3 Tool Steels by Cryogenic Treat-ment, International Journal of Current Engineering and Technology, 5(3). June.

Baldissera, P.; Delprete, D. 2008. Deep cryogenic treatment: A bibliographic review. Open Mech. Eng. J. 2: 1–11.

Barron, R.F. 1984. “A Study on the Effect of Cryogenic Treatment on Tool Steel Properties”, Louisiana Te-chnical University Report, August, 30.

Barron, R.F. 1982. “Cryogenic treatment on metals to improve wear resistance.Cryogenics” 22: 409–414.

Bensely, A.; Prabhakaran, A.; Lal, D. M.; 2006. Nagarajan G. Enhancing the wear resistance of case carbu-rized steel (En 353) by cryogenic treatment. Cryogenics 45: 747–754

Candane, D.; Alagumurthi, N.; Palaniradja, K. 2013. Effect of cryogenic treatment on microstructure and wear characteristics of AISI M35 HSS. Int J Mater Sci App 2(2):56–65

Coronado, J. J. 2011. Effect of load and carbide orientation on abrasive wear resistance of White cast iron, Wear 270: 823–827.

Darwin, J.; Mohan Lal, D.; Nagarajan, G. 2008. Optimization of cryogenic treatment to maximize the wear resistance of 18% Cr martensitic stainless steel by Taguchi method, J. Mater. Process. Technol., 195: p.241.

Das, D., Dutta, A., Ray, K., 2010. Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness, Mater. Sci. Eng. A, 527: p.2182.

Das, D.; Dutta, A.; Ray, K. 2010. Sub-zero treatments of AISI D2 steel: Part II. Wear behavior Materials Science and Engineering A 527: 2182.

Das, D.; Dutta, A.; Ray, K. 2009. Influence of varied cryotreatment on the wear behavior of AISI D2 steel, Wear 266: 297–309

Das, D., Dutta, A., Ray, K., 2009. Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel, Cryogenics, 49: p.176.

Das, D.; Ray, K. 2012. Structure–property correlation of sub-zero treated AISI D2 steel, Materials Science and Engineering A 541: 45– 60.

Dhokey, N.; Hake, A.; Thavale, V.; Gite R, Batheja R. 2014. Microstructure and Mechanical Properties of Cryotreated SAE8620 and D3 Steels, CAMSR 1(1) Jan. PP. 23-37Dhokey, N.; Nirbhavne, S. 2009. Dry sliding wear of cryotreated multiple tempered D-3 tool Steel, Journal of materials processing technology 209: 1484–1490

Disponible en: http://www.research and markets.com/reports/3534920/global-metal-form ing machi ne tools-market-2016

Farina, P.; Barbosa, C.; Goldenstein, H. 2011. Microstructural Characterization of an AISI D2 Tool Steel Submitted to Cryogenic Treatment, Journal of ASTM International 8: 1.

Firouzdor, V.; Nejati, E.; Khomamizadeh, F. 2008. Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill. J Mater Process Technol 2006: 467–472

Fu, L.C.; Tan, P.; Zhu, J.J,; Yang, W.; Li, D; Zhou, L., 2017. Tribological properties of surface nanocrystalli-ne martensite steel in vacuum.Journal Tribology International, 109: 246-251.

Gavriljuk, V.G.; Theisen, W.; Sirosh, V.V. 2013. Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Mater. 61: 1705–1715.

Ghasemi, H.; Mohammad Jahazi, N.; Naraghi, R. 2015. Martensitic transformation in AISI D2 tool Steel during continuous cooling to 173 K, Journal of Material Science 50: 5758.

Ghazi, S.; Mashloosh, K. 2015. Influence of Heat Treatment on Resistance of Wear and Mechanical Pro-perties of Die Steel Kind D3, Am. J. Sci. Ind. Res., 5(2): 33-40

Gill, SS.; Singh, H. 2010. Cryoprocessing of cutting tool materials— a review. Int J Adv Manuf Technol 48:175–192

Gill, SS.; Singh, J.; Singh, R.; Singh, H. 2012. Effect of cryogenic treatment on AISI M2 high speed steel: me-tallurgical and mechanical characterization, Journal JMEPEG 21:1320–1326

Global Metal Forming Machine Tools Market. 2015. 2016–2020, December.

Guo, J.; Feng, Y.; Liu, X.; Ren, X.; Yang, Q. 2016. Investigation of microstructural damage to eutectic car-bides from scratch tests of a heat-treated Fe–Cr–W–Mo–V–C alloy, Wear 358-359, 137–147

Guo, J.; Li, Q.; Qu, H.W.; Liu, L.G.; Yang, Q.X. 2012. Carbide precipitation behavior and wear resistance of a novel rolle steel, J. Mater. Eng. Perform. 22:1790–1797.

Jurci, P.; Domankova, M.; Caplovic, L.; Ptacinova, J.; Sobotova, J.; Salabova, P.; Prikner, O.; Sustarsic, B.; Jenko, D., 2015. Microstructure and hardness of sub-zero treated and no tempered P/M Vanadis 6 le-deburitic tool Steel, Vacuum 111: 92-101

Jurči, P.; Dománková, M.; Hudáková, M.; Ptačinová, J. ; Pašák, M.; Palček, P., 2017. Characterization of microstructure and tempering response of conventionally quenched, short- and long-time sub-zero treated PM Vanadis 6 ledeburitic tool Steel, Materials Characterization 134: 398–415

Jurci, P.; Domankova, M.; Ptacinova, J.; Pasák, M.; Kusy, M. Priknerová, P. 2017. Investigation of the Mi-crostructural Changes and Hardness Variations of Sub-Zero Treated Cr-V Ledeburitic Tool Steel Due to the Tempering Treatment, Journal (JMEPEG).

Kalsi, NS.; Sehgal, R.; Sharma, VS. 2014. Effect of tempering after cryogenic treatment of tungsten carbide–cobalt bounded inserts. Bull Mater Sci 37(2):327–335

Kalsi, N.S.; Sehgal, R.; Sharma, V.S. 2010. Cryogenic Treatment of Tool Materials: A Review, Materials and Manufacturing Processes, 25: 1077–1100

Kalsi, NS.; Sehgal, R.; Sharma, VS. 2010. Cryogenic treatment of tool materials: a review II. Mater Manuf Process 26:1076–1086.

Khun, N.; Liu, E.; Tan, A.; Senthilkumar, D.; Albert, B.; Mohan Lal, D. 2015. Effects of deep cryogenic treatment on mechanical and tribological properties of AISI D3 tool Steel, Friction 3(3): 234–242

Korade, D.; Ramanaa, K.; Jagtap, K.; Dhokey, N. 2017. Effect of Deep Cryogenic Treatment on Tribological Behaviour of D2 Tool Steel - Experimental Investigation, Materials Today: Proceedings 4: 7665–7673.

Leskovsek, V.; Podgornik, B.; 2012. Vacuum heat treatment, deep cryogenictreatment and simultaneous pulse plasma nitriding and tempering of P/MS390MC steel. Mater. Sci. Eng. A 531: 119–129.

Luan, Y.; Song, N.; Bai, Y.; Kang, X.; Li, D. 2010. Effect of solidification rate on the morphology and distri-bution of eutectic carbides in centrifugal casting high-speed steel rolls, Journal of Materials Processing Technology 210: 536–541

Mohan, L. D.; Renganarayanan, S.; Kalanidhi, A. 2001. “Cryogenic treatment to augment wear resistance of tool and die steels”.,Cryogenics 41:149–155.

Molinari, A.; Pellizzari, M.; Gialanella, S.; Straffelini G.; Stiasny, K. 2001. “Effect of deep cryogenic treat-ment on the mechanical properties of tool steels”, J. Mater. Process. Technol. (18): 350–355.

Muthuraja, A.; Senthilvelan, S. 2015. Abrasive wear performance of tungsten carbide based self-lubricant cutting tool material, Int. J.Refract. Met. Hard Mater. 51: 91–101.

Naravade, R.; Aher, A.; 2017. Analysis of wear behavior of d6 tool steel by influence of cryogenic treat-ment, Journal (IRJET) 04 (05) May.

Naravade, R.; Belkar, S.; Kharde, R. 2013. Effects of Cryogenic Treatment, Hardening and Multiple Tempe-ring on Wear Behavior of D6 Tool Steel, Journal of Engineering and Science (IJES). 2 – 5: p.p. 01-15.

Naravade, R.; Gujar, U.; Kharde, R. 2012. Optimization of Cryogenic Treatment on Wear Behaviour of D6 Tool Steel by Using DOE/RSM, (IJEAT) ISSN: 2249 – 8958, 2(2) December.

Novikov, V. 2003. Concise Dictionary of Material Science, Taylor y Francis (ebook), p.98, Disponible en: https://www.taylorandfrancis.com

Oppenkowski, A.; Weber, S.; Theisen, W. 2010. Evaluation of factors influencingdeep cryogenic treatment that affect the properties of tool steels. J. Mater.Process. Technol. 210: 1949–1955.

Pillai, N., Karthikeyan, R., Davim, J., 2017. A review on effects of cryogenic treatment of AISI ‘D’ series cold working tool steels, Rev. Adv. Mater. Sci. 51:149-159

Pirtovsek, T.V.; Kugler, G.; Godec, M.; Tercelj, M. 2012. Three Important Points that Relate to Improving the Hot Workability of Ledeburitic Tool Steels, The Minerals, Metals & Materials Society and ASM In-ternational.

Podgornik, B.; Leskovšek, V.; Vižintin, J. 2009. Influence of deepcryogenic treatment on tribological proper-ties of P/M high-speed steel. Mater Manuf Process 24:734–738

Podgornik, B.; Majdicb, F.; Leskovseka, V. 2012. Vizintinb J. Improving tribological properties of tool steels through combination of deep cryogenic treatment and plasma nitriding. Wear 288: 88–93

Ptačinová, J.; Sedlická, V.; Hudáková, M.; Dlouhý, I.; Jurči, P., 2015. Microstructure – toughness relations-hips in sub-zero treated and tempered vanadis 6 steel compared to conventional treatment, Materials Science & Engineering A,

Roberts, G.; Krauss, G.; Kennedy, R., 1998. Tool Steels: ASM International, 5th Edition,

Rodenburg, C. W.; Rainforth, W.M. 2007. A quantitative analysis of the influence of carbides size distribu-tions on wear behaviour of high-speed steel indry rolling/sliding contact, Acta Mater. 55: 2443–2454.

Saha, S K.; Prasad, L.; Kuma, V. 2012. Experimental investigations on heat treatment of cold work tool steels: Part 1, air hardening grade (D2). Int J Eng Res Appl 2(2): 510–519

Senthilkumar, D.; Rajendran, I. 2011. Influence of shallow and deep cryogenic treatment on tribological behavior of En 19 steel. J Iron Steel Res Int 18(9):53–59

Singh, LP.; Singh, J. 2012. Effects of cryogenic treatment on the cutting tool durability 3:111–23

Sun, Y. 2013. Sliding wear behaviour of surface mechanical attrition treated AISI 304 stainless Steel Tribol. Int. 57: 67

Thornton, R. 2014. Investigating the effects of cryogenic processing on the wear performance and micros-tructure of engineering materials, University of Sheffield.

Thornton, R. 2014. Investigating the effects of cryogenic processing on the wear performance and micros-tructure of engineering material, Thesis submitted to degree of Doctor, University of Sheffield, p.104.

Thornton, R.; Slatter, T.; Ghadbeigi, H. 2013. Effects of deep cryogenic treatment on the dry sliding wear performance of ferrous alloys, Wear 305:177–191

Tyshchenko, A.I.; Theisen, W.; Oppenkowski, A.; Siebert, S.; Razumov, O.N; Skoblick, A.P.; Sirosh, V.A; Petrov, N.; Gavriljuk, V.G., 2010. Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel, Mater. Sci. Eng. A, 527: 7027-7039.

Villa, M.; Pantleon, K.; Somers, M.A.J. 2014. Evolution of compresive strains in retained austenite during sub-zero Celsius martensite formation and tempering. Acta Mater. 65, 383–392.

Zhang, P.; Zhang, F.C.; Yan, Z.G.; Wang, T.S.; Qian, L.H. 2011. Wear property of low-temperature bainite in the surface layer of a carburized low carbon steel, Wear, 271: 697-704.

Zhou, X.; Zhu, W.; Jiang, H.; Fang, F.; Tu, Y.; Giang, J. 2016. A New Approach for Refining Carbide Dimen-sions in M4Super Hard High-Speed Steel, Journal of Iron and Steel Research, International, 23 (8): 800-807

Published

2020-02-04

How to Cite

Alcántara, V., Damián, Z., & Alvarez, G. (2020). Efecto de los tratamientos criogénicos en el desgaste y microestructura de los aceros ledeburíticos usados en las herramientas de conformado en frio – Revisión. Revista CIENCIA Y TECNOLOGÍA, 16(1), 9-20. Retrieved from https://revistas.unitru.edu.pe/index.php/PGM/article/view/2744

Issue

Section

Artículos Originales