SOBRE EL PROBLEMA DE CAUCHY PARA UN SISTEMA PARTICULAR DE ECUACIONES DE KDV

Authors

  • Santos Ñique Romero Universidad Nacional de Trujillo
  • Raúl Saráchaga Villanueva Universidad Nacional de Trujillo
  • Marcos Ferrer Reyna

Abstract

En este trabajo estudiaremos la buena colocación local del problema de valor inicial asociado al sistema de ecuaciones de KdV. Usando las estimaciones biliniales establecidas por Kenig, Ponce y Vega en el espacio de restricciones de la transformada de Fourier probaremos el resultado local para un dato inicial dado en un espacio de Sobolev de orden mayor que −3/4.


Palabras claves. Problema de Cauchy, buen planteamiento y existencia.


References

Albert, J., and Linares, F., Stability and symmetry of solitary-wave solutions modeling interactions of long waves., J. Math. Pure Appl., 79 (2000), 195-226.

Ash, J., Cohen and Wang, G., On strongly interacting internal solitary waves., J. Fourier Anal. Appl., 5 (1996), 507-517.

Bisognin, E., Bisognin, V., and Menzala, G.P., Exponential stabilization of a coupled system of Korteweg-de Vries equations with localized domping., Adv. Diff, Eqn., 8 (2003), 443-469. [4] Bona, J., and Chen, H., Solitary waves in nonlinear dispersive systems., Discrete Contin.

Dyn. Syst. Ser. B, 2 (2002), 313-378.

Bona, J., Ponce, G., Saut, J-C., and Tom M., A model system for strong interactions

between internal solitary waves., Comm. Math. Phys., 143 (1992), 287-313.

Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and appli- cations to nonlinear evolution equations., Geom. Funct. Anal., 3 (1993), 107-156, 209-262. [7] Bourgain, J., Periodic Korteweg-de Vries equation with measures as initial data., Sel. Math.,

New Ser., 3 (1997), 115-159.

Bourgain, J., Refinements of Strichartz inequality and applications to 2D-NLS with critical

nonlinearity., Internat. Math. Res. Notices, 5 (1998), 253-283.

Chirst, M., Colliander, J., and Tao T., Asymptotics, frequency modulation and low regu-

larity ill-posedness for canonical defocusing equations., Preprint (2002).

Colliander, J., Keel, M., Staffilani, G., Takaoka, H., and Tao T., Global well-posedness for KdV in Sobolev spaces of negative index., Electron. J. Differential Equations, 26 (2001),

-7.

Gear,J.A.,andGrimshaw,R.,Weakandstronginteractionsbetweeninternalsolitarywaves.,

Stud. Appl. Math., 70 (1984), 235-258.

Kenig, C.E., Ponce, G., and Vega, L., Well-posedness and scattering result for the gener-

alized Korteweg-de Vries equation via the contraction principle., R.I, Comm. Pure Appl.

Math., 46 (1993), 527-620.

KeningC.E.,PonceG.andVegaL.,TheCauchyproblemfortheKorteweg-deVriesequation

in Sobolev spaces of negatives indices., Duke Math. J., 71 (1993), 1-21.

Kenig, C.E., Ponce, G., and Vega L., A bilinear estimate with application to the KdV

equation., J. Amer. Math Soc., 9 (1996), 573-603.

Menzala, G.P., Vasconcellos, C.F., and Zuazua E., Menzala G.P., Vasconcellos C.F. and

Zuazua E., Quart. Appl. Math., 60 (2002), 111-129.

Nakanishi, K., Takaoka, H., and Tsutsumi Y., Counterexamples to bilinear estimates re- lated with the KdV equation and nonlinear Schr ̈odinger equation., IMS Conference on Differential Equations from Mechanics (Hong Kong, 1999), Methods Appl. Anal., 8 (2001), 569-578.

Saut, J-C., and Tzvetkov, N., On a model system for the oblique interaction of internal gravity waves., Math Modelling and Numerical Anal., 36 (2000), 501-523.

Staffilani, G., On the growth of high Sobolev norms of solutions for KdV and Schro ̈dinger equations., Duke Math. J., 86 (1997), 109-142.

Takaoka, H., Global well-posedness for Schro ̈dinger equations with derivate in a nonlinear tern and data in low-order Sobolev spaces., Electronic Jr. Diff, Eqn., 42 (2001), 1-23.

Tzvetkov, N., Remark on the local ill-posedness for KdV equation, C.R. Acad. Sci. Paris Ser. 1, 329 (1999), 1043-1047.

Published

2019-08-14