Sensores tipo fruto electrónico: Aplicabilidad en procesos agroindustriales y metodología para su desarrollo

Erick Fiestas, Sixto Prado

Resumen


En este trabajo se presenta los resultados de una investigación del tipo documental sobre sensores “fruto electrónico” (sensores esféricos o seudofrutos) aplicados en la industria alimenticia. El propósito es mostrar los avances más importantes que se han logrado en esta área y con ello trascender el conocimiento acumulado tal que conduzca a nuevos conocimientos, innovaciones tecnológicas y en especial resaltar que su uso en líneas de proceso industriales ha permitido minimizar los daños en los frutos debido a golpes mecánicos y por lo tanto reducir las pérdidas de producción. Primero se analiza las causas, detección y cuantificación del moretón en el fruto debido a golpe mecánico. Segundo, se analiza el mapa de moretón como una herramienta que relaciona el grado del moretón con el golpe mecánico que lo genera. Tercero, se determina el nivel de aplicabilidad (NA) de un sensor tipo fruta electrónica como la sumatoria de los pesos asignados a indicadores de capacidad de trabajo del sensor en línea de proceso industrial. Finalmente, se presentan los resultados de NA de los sensores de tipo frutas electrónicas más relevantes en el mercado.   


Palabras clave


sensor tipo fruta electrónica; pseudofruto; frutos hortofrutícolas; arándanos; líneas de procesos agroindustriales.

Texto completo:

PDF

Referencias


Abedi, G.; Ahmadi, E. 2013. Design and Evaluation a Pendulum Device to Study Postharvest Mechanical Damage in Fruits: Bruise Modeling of Red Delicious Apple. Australian Journal of Crop Science 7: 962–968.

Aguayo, G.E.; Alegre, C.S.; Bitencourt, A.G.; Escalona C.V. 2010. Evaluación no destructiva de la calidad e implementación en la industria frutícola. FRUTURA 3: 1-143.

Arazuri, S.; Arana, I.; Jaren, C. 2010. Evaluation of Mechanical Tomato Harvesting Using Wireless Sensors. Sensors 10: 11126-11143.

Bahareh, T.; Chan, A.; Shirmohammadi, S. 2018. Effect of Pressure on Skin-Electrode Impedance in Wearable Biomedical Measurement Devices. IEEE Transactions on Instrumentation and Measurement. pp. 1-13.

Biagiotti, L.; Lotti, F.; Melchiorri, C.; Vassura, G. 2004. How far is the human hand? a review of anthropomorphic robotic end-effectors. internal report. Tech. rep., Universita di Bologna. 1-21.

Bollen, A.F.; Cox, N.R.; Dela Rue B.T.; Painter, D.J. 2001. A descriptor for damage susceptibility of a population of produce. J. Agric. Eng. Res. 78: 391–395.

Catania, P.; Febo, P.; Alleri, M.; Vallones, M. 2015. A Novel System for Measuring Damaging Impacts on Table Olives. Chemical Engineering Transactions. 44: 1–6.

Cerruto, E.; Aglieco, C.; Gottschalk, K.; Surdilovic, J.; Manetto, G.; Geyer, M. 2015. FEM Analysis of Effects of Mechanical Impact Parameters on Fruit Characteristics. AgricEngInt: CIGR Journal 17: 430–440.

Chen, L.; Zhang, H.; Zhang, K.; Yang, J.; Zhang, S.; Zhan, Y.; Wang, X.; Yang, P. 2017. Modeling and analysis of blueberry gray mold. 29th Chinese Control And Decision Conference (CCDC). Chongqing, China.

Danno, A.; Miyazato, M.; Ishiguro, E. 1977. Quality evaluation of agricultural products by infrared imaging method. I. Grading of fruits for bruise and other surface defects. Mem. Fac. Agric. Kagoshima Univ. 14: 123–138.

Di Renzo, G.; Altieri, G.; Genovese, F.; D’Antonio, C. 2009. A Method to set-up Calibration Curve for Instrumented Sphere IS100 to Control Mechanical Damage During Post-Harvesting and Handling of Oranges. J. of Ag. Eng. 4: 9 – 17.

ESYS Gmbh and Martin Lishman Ltd. 2014. TuberLog: Instruction Manual and User Guide.

Gowe, A.A.; O’Donnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. 2007. Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol 18: 590–598.

Hamilton, C.; Muhamad, M.; Douglas, J.; MacLaren, D.; Asen, A.; Vihar, P. 2018; Impact of Randomly Distributed Dopants on Ω-Gate Junctionless Silicon Nanowire Transistors. IEEE Transactions on Electron Devices.

Herold, B.; Truppel, I.; Jacobs, A.; Geyer M. 2005. Impact Detector for Implantation into Perishable Fruit. Landtechnik. 60: 208 – 209.

Huang, H.; Liu, L.; Ngadi, M. 2014. Recent Develop-ments in Hyperspectral Imaging for Assessment of Food Quality and Safety. Sensors. 14: 7248 – 7276.

Jack, K.; Dessureault, M.; Prasad, R. 2013. Post-Harvest Life of Organic Potatoes. Project Report to Organic Sector Development Program.

Jiang, Y.; Li, C.; Takeda, F. 2016. Nondestructive Detection and Quantification of Blueberry Bruising using Near-infrared (NIR) Hyperspectral Reflec-tance Imaging. Scientific Reports 6: 35679-35692.

Jiménez, R.; Rallo, P.; Suárez, M.; Morales-Sillero, A.; Casanova, L.; Rapoport, H. 2010. Cultivar susceptibility and anatomical evaluation of table olive fruit bruising. En Proceedings of the International XXVIII Horticultural Congress on Science and Horticulture 924: 419–424.

Li, C.; Krewer, G.; Takeda, F. 2014. Improving blueberry mechanical harvest efficiency: Quantifying with blueberry impact recording device (BIRD) and developing information to assist in reducing soft berries in machine harvested blueberries. Progress Report for project titled: USDA-ARS, Appalachian Fruit Research Station.

Luo, R.; Lewis, K.; Zhang, Q.; Wang, S. 2012. Assessment of Bruise Damage by Vacuum Apple Harvester Using an Impact Recording Device. ASABE. Paper number 12: 1338094.

Lu, H.; Zheng, H.; Hu, Y.; Lou, H.; Kong, X. 2011. Bruise Detection on Red Bayberry (Myrica Rubra Sieb. & Zucc.) Using Fractal Analysis and Support Vector Machine. Journal of Food Engineering 104: 149-153.

Ming, L.; Fan, J.; Xu, X.; Huang, R. 2017. Investigation on Electrostatic Discharge Robustness of Gate-All-Around Silicon Nanowire Transistors Combined With Thermal Analysis. IEEE Electron Devices Society 38: 1653-1656.

Mohsenin, N.N. 1986. Physical properties of plant and animial materials: structure. In: Physical Characterisitics and Mechanical Properties, 1st ed. Gordon and Breach Science Publishers Inc., New York.

Moggia, C.; Graell, J.; Lara, I.; González, G.; Lobos, G. 2017. Firmness at Harvest Impacts Postharvest Fruit Softening and Internal Browning Development in Mechanically Damaged and Non-damaged Highbush Blueberries. Front. Plant Sci.

Müller, I.; Machado, R.; Pereira, C.; Joao, R. 2009. Wireless Instrumented Sphere For Three-Dimensional Force Sensing. IEEE Sensors Applications Symposium.

Nicolau, M. 2009. Ésfera Instrumentada de Baixo Custo para Monitoramento de Impactos e Temperatura Durante Processos Pós-colheita. Thesis. Univer-sidade Estadual de Campinas. Brasil. 283 pp.

Opara, U.; Pathare, P. 2014. Bruise damage measurement and analysis of fresh horticultural produce – A review. Postharvest Biology and Technology 91: 9 – 24.

Praeger, U.; Surdilovic, J.; Truppel, I.; Herold, B.; Geyer, M. 2013a. Comparison of Electronic Fruits for Impact Detection on a Laboratory Scale. Sensor. 13: 7140-7155.

Praeger, U.; Surdilovic, J.; Geyer, M. 2013b. TuberLog and Co., Measuring Behavior of Artificial Fruits in Laboratory. Landtechnik 68: 259-264.

Prange, R.; Delong, J.; 1998. Bruising reduction: effect of storage humidity and post storage handling on compression bruising of CA stores apples. In: 14th Annual Postharvest Conference, Yakima, Washington.

Roa, Y.; Fruett, F.; Ferreira, M. 2013. Real Time Measurement System Based on Wireless Instrumented Sphere. SpringerPlus 2: 582-591.

Roa Y.; Fruett F.; Antoniolli L.; Oliveira T.; Poletto F.; Ferreira M. 2015. Impact Measurement on Apple and Orange Packinghouses Using a Wireless Instrumented Sphere. Chemical Engineering Transactions 44: 97-102.

Roa, M.; Suarez, R; Cornella, J. 2008. Medidas de calidad para la prensión de Objetos. Revista Iberoamericana de Automatica e Informatica Industrial 5: 66-82.

Shahbazi, F.; Geyer, M.; Praeger, U.; König, C.; Herold, B. 2011. Comparison of Two Impact Detecting Devices to Measure Impact Load on Potatoes. CIGR Journal. 13.

Studman, C. 1997. Factors affecting the bruise susceptibility of fruit. In: Jeronimidis, G., Vincent, J.F.V. (Eds.), Proceedings of the 2nd International Conference of Plant Biomechanics. Centre for Biomimetics, University of Reading, pp. 273–281.

Soots, K.; Krikmann, O.; Starast, M.; and Olt, J. 2017. Determining the dimensional characteristics of blueberries. Agronomy Research 15(3): 886-896.

Takeda, F.; Wei Q.; Yang, W.; Li, Q.; Freivalds, A.; Sung, K.; Williamson, J.; Sargent, S. 2017. Applying New Technologies to Transform Blueberry Harvesting. Agronomy. pp. 7-33. Licensee MDPI, Basel, Switzerland.

Van Canneyt, T.; Tijskens, E.; Ramon H.; Verschoore, R.; Sonck, B. 2003. Characterization of a Potato-shaped Instrumented Device. Biosystems Engineering 86: 275-285.

Van Linden, V.; Sila, D.N.; Duvetter, T.; De Baerdemaeker, J., Hendrickx, M., 2008. Effect of mechanical impact-bruising on polygalacturonase and pectin methylesterase activity and pectic cell wall components in tomato fruit. Postharvest Biol. Technol. 47: 98-106.

Van Zeebroeck, M.; Darius, P.; De Ketelaere, B.; Ramon, H.; Tijskens, E. 2007. The effect of fruit properties on the bruise susceptibility of tomatoes. Postharvest Biol. Technol 45: 168-175.

Xu, R.; Li, C. 2014. Development of the Second Generation Berry Impact Recording Device (BIRD II). Sensors. 15: 3688-3705.

Xu, R.; Takeda, F.; Krewer, G.; Li, C. 2015. Measure of mechanical impacts in commercial blueberry packing lines and potential damage to blueberry fruit. Postharvvest Biology and Technology 110: 103-113.

Yu, P.; Li, C.; Takeda, F.; Krewer, G. 2014. Visual Bruise Assessment and Analysis of Mechanical Impact measurement in Southern Highbush Blueberries. American Society of Agricultural and Biological Engineers 30: 29-37.

Zarifneshat, S.; Rohani, A.; Ghassemzadeh, H. R.; Sadeghi, M.; Ahmadi, E.; Zarifneshat, M. 2012. Predictions of apple bruise volume using artificial networks. Comput., Electron. Agric. 82: 75 – 86.

Zhang, S.; Zhang, H.; Zhao, Y.; Guo, W.; Zhao, H. 2013. A simple identification model for subtle bruises on the fresh jujube based on NIR spectroscopy. Math Comput. Mode. 58: 545 – 550.

Zhao, J.; Ouyang, Q.; Chen, Q.; Wang, J. 2010. Detection of bruise on pear by hyperspectral imaging sensor with different classification on algorithms. Sensor Lett. 8: 570 – 576.

Zheng, H.; Jiang, B.; Lu, H. 2011. An adaptive neural-fuzzy inference system (ANFIS) for detection of bruises on Chinese bauberry (Myrica rubra) based on fractal dimension and RGB intensity color. J. Food Eng. 104: 663 – 667.

Zion, B.; Chen, P.; McCarthy; M.J. 1995. Detection of bruises in magnetic resonance images of apples. Comput. Electron. Agric. 13: 289–299.

Received March 19, 2018.

Accepted August 13, 2018.

Corresponding author: spradog@upao.edu.pe (E. Fiestas).




DOI: http://dx.doi.org/10.17268/sci.agropecu.2018.03.16

Enlaces refback

  • No hay ningún enlace refback.


Indizada o resumida en:

  

 

   

 

Licencia de Creative Commons Scientia Agropecuaria revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Reconocimiento-NoComercial 3.0.

ISSN: 2306-6741 (electrónico); 2077-9917 (impreso)
DOIhttp://dx.doi.org/10.17268/sci.agropecu

Dirección: Av Juan Pablo II s/n. Ciudad Universitaria. Facultad de Ciencias Agropecuarias. Universidad Nacional de Trujillo. Trujillo, Perú.
Contactosci.agropecu@unitru.edu.pe