Physicochemical and nutraceutical characterization of sirimbache fruit (Gaultheria glomerata (Cav.) Sleumer)

Mario Espinoza, Elvia Gómez, Sonia Quispe, Jesús A. Sánchez-González, Jackeline León-Vargas


The consumption of vegetables with the greatest nutraceutical potential, especially those with high levels of antioxidants such as anthocyanin and phenolic compounds, has become popular among health conscious consumers. The aim of this research was to determine the nutraceutical potential of sirimbache fruits (Gaultheria glomerata (Cav.) Sleumer). Characterization of the berries resulted in the following: 11.4 °Brix, 3.25 pH, 0.35% acidity, 83.74% moisture, 0.16% ash, monomeric anthocyanins (112.88 mg cyanidin 3-glucoside / 100 g of sample), total phenolic compounds (344.37 mg of gallic acid / 100 g of sample) and vitamin C (13.87 mg ascorbic acid/ 100 g of sample). These values indicate that sirimbache is a nutraceutical food of great interest. Therefore, the expansion of sirimbache to health conscious markets may be feasible. Such expansion is of great importance for rural agribusiness, as it could promote the development of new agroindustrial projects in the province of Celendin and other Andean areas of Peru.

Palabras clave

sirimbache; anthocyanins; phenolic compounds; berries; nutraceuticals.

Texto completo:

PDF (English)


Amorós, A.; Zapata, P.; Pretel, M.; Botella, M.; Serrano., M. 2003. Physico-chemical and physiological changes during fruit development and ripening of five loquat (Eriobotrya japonica Lindl.) cultivars. Revista de Agaroquimica y Tecnologia de Alimentos 9(1): 43–51.

AOAC. 2000. Official method of analysis of AOAC International (17th ed.). USA.

Arteaga, A.; Arteaga, H. 2016. Optimización de la capacidad antioxidante, contenido de antocianinas y capacidad de rehidratación en polvo de arándano (Vaccinium corymbosum) microencapsulado con mezclas de hidrocoloides. Scientia Agropecuaria 7: 191–200.

Ayala, L.; Valenzuela, C.; Bohórquez, Y. 2013. Physico-chemical characterization of Castilla Blackberry (Rubus glaucus Benth) in six maturity states. Biotecnología en el Sector Agropecuario y Agroindustrial 11: 10–18.

Camire, M.; Chaovanalikit, A.; Dougherty, M.; Briggs, J. 2002. Blueberry and grape anthocyanins as breakfast cereal colorants. Journal of Food Science 1: 438–441.

Carmona, M.; Aguirre, G.; Echeverri, M.; Giraldo, J.; Gutiérrez, A.; Tovar, W.; Varón., S. 1996. Caracte-rización fisicoquímica de seis materiales de mora (Rubus glaucus Benth.) producidas en la ciudad de Manizales. Memorias 1er Seminario Nacional de Frutales de Clima Frío Moderado. Manizales 55–60.

Caruso, F.; Ramsdell, D. 1995. Compendium of blueberry and cranberry diseases. Amer Phytopathological Society, USA.

Cerdán-Calero, M.; Izquierdo, L.; Sentandreu., E. 2013. Valencia Late orange juice preserved by pulp reduction and high pressure homogenization: Sensory quality and gas chromatography-mass spectrometry analysis of volatiles. LWT - Food Science and Technology 51: 476–483.

Cho, M.; Howard, L.; Prior, R.; Clark., J. 2004. Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromato-graphy/mass spectrometry. Journal of the Science of Food and Agriculture 84: 1771–1782.

Espinoza, M.; Gómez, E.; Aguilar, J.; Cabanillas, J.; Santa Cruz, M.; Rodríguez, I.; Ríos, R.; Zuta, I.; Siche., R. 2016. Impacto térmico del secado por Ventana RefractanteTM sobre los metabolitos antioxidantes de la cáscara del membrillo (Cydonia oblonga L.). Agroindustrial Science 5: 143–151.

Garrido, M.; Pérez-Urria, E. 2014. Arándano rojo I (Vaccinium macrocarpon Ait.). Reduca (Biología). Serie Botánica 7: 100-112.

Giusti, M.; Wrolstad., R.. 2001. Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy. In Handbook of Food Analytical Chemistry (Vol. 2–2, pp. 19–31).

Guevara-Pérez; A.; Málaga-Barreda, R. 2013. Determina-ción de los parámetros de proceso y caracterización del puré de aguaymanto. Ingeniería Industrial 31: 167–195.

Habauzit, V.; Morand, C. 2012. Evidence for a protective effect of polyphenols-containing foods on cardio-vascular health: an update for clinicians. Therapeutic Advances in Chronic Disease 3: 87–106

Hamauzu, Y.; Inno, T.; Kume, C.; Irie, M.; Hiramatsu, K. 2006. Antioxidant and antiulcerative properties of phenolics from Chinese quince, quince, and apple fruits. Journal of Agricultural and Food Chemistry 54: 765–772.

Hassimotto, N.; Da Mota, R.; Cordenunsi, B.; Lajolo, F. 2008. Physico-chemical characterization and bioactive compounds of blackberry fruits (Rubus sp.) grown in Brazil. Ciencia e Tecnologia de Alimentos 28: 702–708.

Holtung, L.; Grimmer, S.; Aaby, K. 2011. Effect of processing of black currant press-residue on polyphenol composition and cell proliferation. Journal of Agricultural and Food Chemistry 59: 3632–3640.

Hou, DX. 2003. Potential mechanisms of cancer chemoprevention by anthocyanins. Current Molecular Medicine 3: 149–159.

Kalt, W.; McDonald, J.. 1996. Chemical Composition of Lowbush Blueberry Cultivars. Journal of the American Society for Horticultural Science 121: 142–146.

Ki, W.; Hyong, J. 2006. The roles of polyphenols in cancer chemoprevention. BioFactors 26: 105–121.

Klein, B.; Kurilich, A. 2000. Processing effects on dietary antioxidants from plant foods. HortScience 35: 580–584.

Kong, J.; Chia, L.; Goh, N.; Chia, T.; Brouillard, R. 2003. Analysis and biological activities of anthocyanins. Phytochemistry 64: 923–933.

Kopjar, M.; Tiban, N.; Pilizota, V.; Babic., J. 2009. Stability of anthocyanins, phenols and free radical scavenging activity through sugar addition during frozen storage of blackberries. Journal of Food Processing and Preservation 33: 1–11.

Kuskoski, E.; Asuero, A.; García-Parilla, M.; Troncoso, A.; Fett., R. 2004. Actividad antioxidante de pigmentos antociánicos. Food Science and Technology (Campinas) 24: 691–693.

Lazzé, M.; Pizzala, R.; Savio, M.; Stivala, L.; Prosperi, E.; Bianchi, L. 2003. Anthocyanins protect against DNA damage induced by tert-butyl-hydroperoxide in rat smooth muscle and hepatoma cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis 535: 103–115.

Lobo, V.; Patil, A.; Phatak, A.; Chandra., N. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4: 118–126.

Martínez-Soto, G.; Mercado-Flores, J.; López-Orozco, M.; Prieto-Velásquez., B. 2008. Propiedades fisicoquímicas de seis variedades de fresa (Fragaria ananassa) que se cultivan en Guanajuato. Revista Salud Pública y Nutrición (8) Special Issue. Available from

Moyer, R.; Hummer, K.; Finn, C.; Frei, B.; Wrolstad, R. 2002. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. Journal of Agricultural and Food Chemistry 50: 519–525.

Oh, Y.; Lee, J.; Yoon, S.; Oh, C.; Choi, D.; Choe, E.; Jung., M. 2008. Characterization and quantification of anthocyanins in grape juices obtained from the grapes cultivated in Korea by HPLC/DAD, HPLC/MS, and HPLC/MS/MS. Journal of Food Science 73: 378–389.

Pandey, K.; Rizvi, S. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity 2: 270–278.

Pantelidis, G.; Vasilakakis, M.; Manganaris, G.; Diamantidis, G. 2007. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chemistry 102: 777–783.

Peña, A. 2006. El color de los vinos. Grupo de Investigación Enológica de la Universidad de Chile, Vendimia, 24–26. Available from:

Pham-Huy, L.; He, H.; Pham-Huy, C. 2008. Free radicals, antioxidants in disease and health. International Journal of Biomedical Science 4: 89–96.

Pinillos, V.; Hueso, J.; Marcon, J.; Cuevas., J. 2011. Changes in fruit maturity indices along the harvest season in “Algerie” loquat. Scientia Horticulturae 129: 769–776.

Prior, R.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.; O’Brien, C.; Lischner, N. 1998. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. Journal of Agricultural and Food Chemistry 46: 2686–2693.

Rahman, K. 2007. Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging 2: 219–236.

Ramirez-Tortosa; C.; Andersen, Ø.; Gardner, P.; Morrice, P.; Wood, S.; Duthie, S., Collins, A.; Duthie., G. 2001. Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radical Biology and Medicine 9: 1033–1037.

Repo, R.; Encina, C. 2008. Determination of Antioxidant Capacity and Bioactive Compounds in Native Peruvian Fruits. Revista de La Sociedad Química de Perú 2: 108–124.

Rossi, D.; Pardo, F.; Reyes, D.; Tirado, R.; Urbina, E.; Vega, J. 2012. Efecto de la temperatura y sinergismo de sacarosa, sacarina y sugar light en la deshidratación osmótica de aguaymanto (Physalis peruviana). Agroindustrial Science 2: 100–109.

Sapers, G.; Burgher, A.; Phillips, J.; Jones, S. 1984. Color and composition of highbush blueberry cultivars. Journal of the American Society for Horticultural Science 109: 105–111.

Sellappan, S.; Akoh, C.; Krewer, G. 2002. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. Journal of Agricultural and Food Chemistry 50: 2432–2438.

Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor., J. 2015. Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences 16: 24673–24706.

Valencia, C.; Guevara-Pérez, A. 2013. Elaboración de néctar de zarzamora (Rubus fructicosus L.). Scientia Agropecuaria 4: 101–109.

Sun, J.; Chu, Y.; Wu, X.; Liu, R. 2002. Actividades antioxidantes y antiproliferativas de algunas frutas. Journal of Agricultural and Food Chemistry 50: 7449–7454.

Taruscio; T.; Barney, D.; Exon., J. 2004. Content and profile of flavanoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of northwest Vaccinium berries. Journal of Agricultural and Food Chemistry 52: 3169–3176.

Tosun, I.; Ustun, N.; Tekguler., B. 2008. Physical and chemical changes during ripening of blackberry fruits. Scientia Agricola 65: 87–90.

Tsao, R. 2010. Chemistry and biochemistry of dietary polyphenols. Nutrients 2: 1231–1246.

Velazco, E.; Vega., R. 2009. Estabilidad del ácido ascórbico en productos elaborados de camu camu (Myrciaria dubia)(HBK) Mc Vaugh. Centro de Promoción de la Biodiversidad Amazónica. Available from

Viuda-Martos, M.; Navajas, Y.; Zapata, E.; Fernandez-Lopez, J.; Perez-Alvarez, J. 2010. Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour and Fragrance Journal 25: 13–19.

Wicklund, T.; Rosenfeld, H.; Martinsen, B.; Sundfør, M.; Lea, P.; Bruun, T.; Blomhoff, R.; Haffner, K. 2005. Antioxidant capacity and colour of strawberry jam as influenced by cultivar and storage conditions. LWT - Food Science and Technology 38: 387–391.

Yıldız, G.; İzli, N.; Ünal, H.; Uylaşer, V. 2015. Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). Journal of Food Science Technology 52: 2320-2327.

Yorgey, B.; Farkas, D.; Finn, C. 1995. Evaluation of Processing Quality of Advanced Strawberry and Cranberry Breeding Selections. Research Progress Report. Oregon Strawberry Commission. Available from

Zadernowski, R.; Naczk, M.; Nesterowicz, J. 2005. Phenolic acid profiles in some small berries. Journal of Agricultural and Food Chemistry 53: 2118–2124.

Received March 17, 2017.

Accepted October 26, 2017.

Corresponding author: (J. Sánchez-González).


Enlaces refback

  • No hay ningún enlace refback.

Licencia de Creative Commons Scientia Agropecuaria revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Reconocimiento-NoComercial 3.0.

ISSN: 2306-6741 (electrónico); 2077-9917 (impreso)

Dirección: Av Juan Pablo II s/n. Ciudad Universitaria. Facultad de Ciencias Agropecuarias. Universidad Nacional de Trujillo. Trujillo, Perú.