Aplicación de modelos cinéticos no estructurados en el modelamiento de la fermentación láctica de subproductos de pesca

Miguel A. Solano-Cornejo, Julio M. Vidaurre-Ruiz

Resumen


En el presente trabajo se evaluaron cinco modelos en su capacidad de predecir la cinética de producción de ácido en la fermentación láctica de sub productos de pesca. Los modelos no estructurados evaluados fueron: Gompertz, Baranyi-Roberts, Özilgen, Peleg y Vasquez-Murado. La evaluación estadística entre modelos comprendió la Suma Cuadrado del Error (SCE), la Prueba de Fisher y los Índices de Sesgo y Precisión de Ross. Los modelos que presentaron menores valores de SCE, ausencia de diferencias significativas entre sí (p < 0,05) y mejores Índices de Sesgo y Precisión fueron el modelo empírico de Gompertz y el modelo mecanicista de Baranyi-Roberts, ello debido a su capacidad de modelar curvas simétricas y asimétricas en el primer caso y a su flexibilidad a diferentes condiciones en el segundo caso. El modelo empírico de Peleg y modelo logístico de Vasquez-Murado no lograron dar un ajuste adecuado para el tipo de fermentación láctica analizada. La diferencia en la capacidad predictiva entre los modelos ensayados se debió a que la fermentación se realizó con un arrancador de dos cepas con diferentes velocidades de producción de ácido láctico, lo que generó una curva de producción de ácido láctico con una asimetría que los modelos de Peleg y Vasquez-Murado no lograron fijar en forma adecuada.


Palabras clave


fermentación láctica; cinética; modelos no estructurados; modelo de Gompertz; modelo de Baranyi-Roberts.

Texto completo:

PDF

Referencias


Akkermans, S; Noriega Fernandez, E.; Logist, F.; Van Impe, J.F 2017. Introducing a novel interaction model structure for the combined effect of temperature and pH on the microbial growth rate. International Journal of Food Microbiology 240: 85–96.

Besas, J.R. 2012. Influence of Salt Concentration on Histamine Formation in Fermented Tuna Viscera (Dayok). Food and Nutrition Sciences 3(2): 201–206.

Charalampopoulos, D; Antonio, J.; Pandiella, S.S. 2009. Modelling and validation of Lactobacillus plantarum fermentations in cereal-based media with different sugar concentrations and buffering capacities. Biochemical Engineering Journal 44: 96–105.

Fu, W.; Mathews, A.P. 1999. Lactic acid production from lactose by Lactobacillus plantarum : kinetic model and effects of pH , substrate , and oxygen. Biochemical Engineering Journal 3: 163–170.

Grijspeerdt, K.; Vanrolleghem, P. 1999. Estimating the parameters of the Baranyi model for bacterial growth. Food Microbiology 16(6): 593–605.

Iglesias, L.; Pérez, J.T.; Valdés, J.F.; Lazo, I. 2007. Estudio del ensilado biológico de pescado como inóculo de bacterias lácticas en la conservación de desechos pesqueros. REDVET. Revista Electrónica de Veterinaria 8: 1–6.

Lopez, S; Prieto, M.; Dijkstra, J.; Dhanoa, M. S.; France, J. 2004. Statistical evaluation of mathematical models for microbial growth. International Journal of Food Microbiology 96: 289–300.

Motulsky, H; Ransnas, L.A. 1987. Fitting curves nonlinear regression : review a practical. FASEB Journal 1(5): 365–374.

Özilgen, S.; Özilgen, M. 1990. Kinetic Model of Lipid Oxidation. Journal of Food Science 55(2): 498–501.

Pan, X; Angelidaki, I.; Alvarado-Morales, M.; Liu, H.; Liu, Y.; Huang, X.; Zhu, G. 2016. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization. Bioresource Technology 218: 796–806.

Peleg, M. 1988. An Empirical Model for the Description Moisture Sorption Curves. Journal of Food Science 53(4): 1216–1217.

Peleg, M; Shetty, K. 1997. Modeling microbial populations with the original and modified versions of the continuous and discrete logistic equations. Critical Reviews in Food Science and Nutrition 37(5): 471–490.

Ramírez, J. C. R; Huerta, S.; Arias, L.; Prado, A.; Shirai, K. 2008. Utilization of fisheries By-Catch and Processing wastes for lactic acid fermentation and evaluation of degree ofprotein hydrolisis and in-vitro digestibility. Revista Mexicana de Ingeniería Química 7(3): 1–10.

Ross, T1996. Indices for performance evaluation of predictive models in food microbiology. The Journal of Applied Bacteriology 81(5): 501–508.

Sharma, V; Mishra, H.N. 2014. Unstructured kinetic modeling of growth and lactic acid production by Lactobacillus plantarum NCDC 414 during fermentation of vegetable juices. LWT - Food Science and Technology 59(2): 1123–1128.

Steinkraus, K.H. 2002. Fermentations in World Food Processing. Comprehensive Reviews in Food Science and Food Safety 1: 23–32.

Toledo-Pérez, J; Llanes-Iglesias, J. 2007. Estudio comp-arativo de los desechos de pescado ensilados por vías bioquímica y biológica (Comparative study of fishing offals silage by biochemical and biologic metho-dologies). REDVET. Revista Electrónica de VeterinariaVIII: 5–11.

Vásquez-García, A; Monteza-Mera , J; Rodríguez-Vega, J; Rodríguez Avalos, F. 2007. Valoración de impactos ambientales significativos utilizando una escala tipo Lickert en la caleta Santa Rosa, Chiclayo. Pueblo Continente 18(1): 53–67.

Vazquez, J.A; Murado, M.A. 2008. Mathematical tools for objective comparison of microbial cultures Application to evaluation of 15 peptones for lactic acid bacteria productions. Biochemical Engineering Journal 39: 276–287.

Xiong, R.; Xie, G.; Edmondson, A.; Linton, R.; Sheard, M. 1999. Comparison of the Baranyi model with the modified Gompertz equation for modelling thermal inactivation of Listeria monocytogenes Scott A. Food Microbiology 16(3): 269–279.

Yuwono, S.D; Kokugan, T. 2008. Study of the effects of temperature and pH on lactic acid production from fresh cassava roots in tofu liquid waste by Streptococcus bovis. Biochemical Engineering Journal 40: 175–183.

Zwietering, M.H; Jongenburger, I.; Rombouts, F.M.;Van, K. 1990. Modeling of the Bacterial Growth Curve Modeling of the Bacterial Growth Curve. Applied Environmental Microbiology 56(6): 1875–1881.

Received June 15, 2017.

Accepted September 25, 2017.

Corresponding author: masolano@crece.uss.edu.pe (M. Solano-Cornejo).




DOI: http://dx.doi.org/10.17268/sci.agropecu.2017.04.08

Enlaces refback

  • No hay ningún enlace refback.


Licencia de Creative Commons Scientia Agropecuaria revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Reconocimiento-NoComercial 3.0.

ISSN: 2306-6741 (electrónico); 2077-9917 (impreso)
DOIhttp://dx.doi.org/10.17268/sci.agropecu

Dirección: Av Juan Pablo II s/n. Ciudad Universitaria. Facultad de Ciencias Agropecuarias. Universidad Nacional de Trujillo. Trujillo, Perú.
Contactosci.agropecu@unitru.edu.pe