Purificación y caracterización preliminar de proteasas del látex de Vasconcellea candicans (A. Gray) A. DC (Mito)

Ana I. F. Gutiérrez, Oscar Nolasco, Carlos Santa Cruz

Resumen


Estudios preliminares indican que, el látex fresco del “Mito” tiene una actividad específica de papaína de 1,84 veces mayor a la encontrada en el látex of papaya, por lo que el objetivo de este trabajo fue purificar y caracterizar las proteasas del látex fresco del “Mito” que tuvieran actividad de papaína. El extracto crudo de proteasas se obtuvo a partir del látex de “Mito” el cual fue resuspendido (1:1) en buffer acetato de Na 10 mM a pH 5,0; inmediatamente se precipitaron proteínas a pH 9,0 y luego con sulfato de amonio al 45%. Posteriormente se purificó en una columna de Sephadex G-100 y se obtuvieron tres fracciones: A, B y C; utilizando como sustrato caseína se midió la actividad enzimática específica (AEE). Se encontró que para la Fracción A la AEE fue de 87,74 nkat.mg-1proteína, para la Fracción B fue de 14,93 nkat.mg-1proteína y para la Fracción C fue de 16,13 nkat.mg-1proteína. La AEE de la fracción A frente a la de papaína de látex fresco de C. papaya fue 13,3 veces mayor. En el análisis electroforético (gel desnaturalizante, 12%) se observa para la fracción A dos bandas de proteínas teniendo una de ellas una “relación de frente” semejante al estándar de papaína. Además, se observó que la fracción A (papaína de “Mito”) frente a diferentes concentraciones de caseína, usada como sustrato, presenta una curva sigmoidea michaeliana; a diferentes volúmenes de enzima se muestra un comportamiento lineal; tiene un pH óptimo a 7,5 y es activa hasta 60 ºC.

Palabras clave


Lomas de Perú; papaya silvestre; látex; papaína; Vasconcella candicans (A. Gray)

Texto completo:

PDF

Referencias


Arnon, R. 1970. Papain. Methods Enzymology 19: 22-44.

Azarkan, M.; Moussaoui, A.E.; van Wuytswinkel, D.; Dehon G.; Looze Y. 2003. Fractionation and purification of the enzymes stored in the latex of Carica papaya. Journal of Chromatography B 790: 229–238.

Badillo, V.M. 2000. Carica L. vs. Vasconcella St. Hil. (Caricaceae): con la rehabilitación de este último. Ernstia 10: 74–79.

Baeza, G.; Correa, D.; Salas C.1990. Proteolytic enzymes in Carica candamarcensis. Journal of the Science of Food and Agriculture 51: 1–9.

Baines, B.S.; Brocklehurst, K. 1978. A spectrophotometric method for the detection of contaminant chymopapains in preparations of papain. Selective modification of one type of thiol group in the chymopapains by a two-protonic-state reagent. Biochemical Journal 173: 345–347.

Baines, B.S.; Brocklehurst K. 1979. A necessary modification to the preparation of papain from any high-quality latex of Carica papaya and evidence for the structural integrity of the enzyme produced by traditional methods. Biochemical Journal 177: 541–548.

Barrett, A.J.; Rawlings, N.D.; Woessner J.F. 1998. Introduction: cysteine peptidases and their clans. In: Handbook of proteolytic enzymes. San Diego: Academic Press. 545–66 pp.

Brack, A. 1999. Diccionario enciclopédico de plantas útiles del Perú. Descripción física. Lima, Perú. 556 pp.

Chaplin, M. 2002. Application of proteases in food industries. Disponible en: http://www1.lsbu.ac.uk/water/enztech/proteases.html

Chu Chi Ming, A.B.; Duduku, K.; Tie Sing H. 2002. Effects of ionic and non-ionic surfactants on Papain activity. Borneo Science 12: 71-77.

Cuya-Matos, O. 1992. Carica candicans (mito): una papaya de zonas áridas que urge revalorar. Boletín de Lima 14: 75-80.

de Feo, V.; De Simone, F.; Arroyo, G.A.; Senatore F. 1999. Carica candicans Gray (mito), an alimentary resource from Peruvian flora. Journal of Agricultural and Food Chemistry 47: 3682-3684.

Dhuique-Mayer, C.; Caro, Y.; Pina, M.; Ruales, J.; Dornier, M.; Graille, J. 2001. Biocatalytic properties of lipase in crude latex from Babaco fruit (Carica pentagona). Biotechnology Letters 23: 1021–1024.

Drenth, J.; Jansonius, J.N.; Koekoek, R.; Swen, H.M.; Wolthers, B.G. 1968. Structure of papain. Nature 218: 929–932.

Ding, L.; Yao, Z.; Li, T.; Yue, Q.; Chai, J. 2003. Study on Papain immobilization on a macroporous polymer carrier. Turkish Journal of Chemistry 27: 627-637.

Dubois, T.; Jacquet, A.; Schnek, A.G.; Looze Y. 1988. The thiol proteinases from the latex of Carica papaya L. I. Fractionation, purification and preliminary characterization. Biological Chemistry Hoppe-Seyler, 369: 733-40.

Dunn, B.J.; Cane, D.E.; Khosla, C. 2013. Mechanism and specificity of an acyltransferase domain from a modular polyketide synthase. Biochemistry 52(11): 1839-1841.

Edwin, F.; Jagannadham, M.V. 2000. Single disulfide bond reduced papain exists in a compact intermediate state. Biochimica et Biophysica Acta 1479: 69-82.

Gomes, M.T.R.; Teixeira, R.D.; Ribeiro, H. de A.L.; Turchetti, A.P.; Junqueira, C.F.; Lopes, M.T.P.; Nagem, R.A.P. 2008. Purification, crystallization and preliminary X-ray analysis of CMS1MS2: a cysteine proteinase from Carica candamarcensis latex. Acta Crystallographica Section F: Structural Biology and Crystallization Communications 64: 492–494.

Gravina, M.; Termignoni, C.; Salas C. 1994. Biochemical characterization of a new cysteine endopeptidasefrom Carica candamarcensis. L. Plant Science 102:11–18.

Gul, S.; Mellor, G.W.; Thomas, E.W.; Brocklehurst, K. 2006. Temperature-dependences of the kinetics of reactions of papain and actinidin with a series of reactivity probes differing in key molecular recognition features. Biochemical Journal 396: 17-21.

Gutiérrez, R.A.; Santa Cruz, C.C. 2016. Actividad de papaína del látex de Vasconcellea candicans (A. Gray) A. DC 1864 “mito”. Análisis biométrico del fruto. The Biologist (Lima) 14(2): 327-337.

Harton, M.; Ochs, R.; Scrigeour, E. 2002. Principle of Biochemistry. Prentice-Hall Inc. New York. pp. 568-570.

Hegnauer, R.1964. Chemotaxonomie der Pflanzen, Band 3 Dicotyledonae: Acantaceae-Cyrillaceae. pp. 743. Birkha¨ - user Report, Basel und Stuttgart.

Kaul, P.; Sathish, H. A.; Prakash, V. 2002. Effect of metal ions on structure and activity of papain from Carica papaya. Nahrung 46: 2–6.

Kimmel, J.R.; Smith, E.L. 1954. Crystalline papain: preparation, specificity and activation. Journal of Biological Chemistry 207: 515–531.

Kyndt, T.; Van Droogenbroeck, B.; Romeijn-Peeters, E.; Romero-Motochi, J.P.; Scheldeman, X.; Goetghebeur, P.; Van Damme, P.; Gheysen, G. 2005. Molecular phylogeny and evolution of Caricaceae based on rDNA internal transcribed spacer (ITS) and chloroplast sequence data. Molecular Phylogenetics and Evolution 37: 442–459.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

Malek, K.; Norazan, M.; Ramaness, P.; Othman, N.Z.; Malek, R.A.; Aziz, R.; Aladdin, A.; El Enshasy, H. 2016. Cysteine Proteases from Carica papaya a key enzyme for many industrial applications: A Review. IOSR Journal of Pharmacy and Biological Sciences 11(2): 11-16.

Mendoza, A.; Eusebio, L. 1995. Ecología y aspectos sociales de algunas lomas centrales del Perú durante 1991 a 1993. Boletin de Lima 16: 9-96.

Menger, M.; Tuschl, T.; Eckstein, F.; Porschke, D. 1996. Mg2+-dependent conformational changes in the hammerhead ribozyme. Biochemistry 35: 14710–14716.

Mitchell, R.E.J.; Chaiken, I.M.; Smith, E.L. 1970. The complete amino acid sequence of papain: additions and corrections. Journal of Biological Chemistry 245: 3485–3492.

Monti, R.; Basilio, C.A.; Trevisan, H.C.; Contiero, J. 2000. Purification of papain from fresh latex of Carica papaya. Brazilian Archives of Biology and Technology 43: 501-507.

Nitsawang, S.; Hatti-Kaul, R.; Kanasawuda, P. 2006. Purification of papain from Carica papaya latex: aqueous two-phase extraction versus two-step salt precipitation. Enzyme and Microbial Technology 39: 1103-1107.

Oberg, K.A.; Ruysschaert, J.; Azarkan, M.; Smolders, N.; Zerhouni, S.; Wintjens, R.; Amrani, A.; Looze, Y. 1998. Papaya glutamine cyclase, a plant enzyme highly resistant to proteolysis, adopts an all b conformation. European Journal of Biochemistry 258: 214–222.

Obregón, W.D., Trejo, S.A., Liggieri, C.L., Morcelle, R., Hernández, M., Priolo, N.S. 2007a. Desarrollo de un método para detectar la presencia de cisteín proteasas en extractos vegetales por medio del análisis de mapas peptídicos por MALDI-TOF”. Memorias del VII Congreso Internacional Biotecnología y Agricultura BIOVEG, Ciego de Ávila, Cuba.

Obregón, D., Torres, M.J., López, L., Morcelle, S., Bruno, M., Liggieri, C., Trejo, S. 2007b. Characterization by PMF MALDI-TOF analysis of plant cysteine endopeptidases. Congreso; 1st. Annual Iberoamerican Proteomics Congress. Pilar, Bs. As. Argentina.

Omeje, K.O.; Eze, S.O.; Ozougwu, V.E.O.; Ubani, Ch.S.; Osayi, E.; Onyeke, Ch. C.; Chilaka, F.C. 2014. Application of papain from paw paw (carica papaya) latex in the Hydrolysis of Tiger Nut (C. esculentus) Proteins. Mitteilungen Klosterneuburg 64: 1-17.

Pereira, M.T.; Lopes, M.T.P.; Meira, W.O.; Salas, C.E. 2001. Purification of a cystein proteinase from Carica candamarcensis L. & cloning of a genomic putative fragment coding for this enzyme. Protein Expression and Purification 22: 249–257.

Pinazo, M.O.; Gutiérrez, S.P.; Quequezana, B.M.; Arenas, Ch.C. 2005. Extracción de la papaína de Carica papaya var. Arequipensis. Véritas 9: 128 – 134.

Ritchie, C. 2012. Protein Purification. Iowa State University, United States. Mater Methods 2: 134.

Robinson, G.W. 1975. Isolation and characterization of papaya peptidase A from commercial chymopapain. Biochemistry 14: 3695-3700.

Schechter, I.; Berger, A. 1968. On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain. Biochemical, Biophysical Research Communication 32: 888-902.

Scheldeman, X.; Van Damme, P.; Romero-Motochi, J.P. 2002. Highland Papayas in Southern Ecuador: need for conservation actions. Acta Horticulturae (ISHS), 575:199–205.

Sigma. 1999. Enzymatic Assay of Protease. Sigma Quality Control Test Procedure: SSCASE01.001. 4 pp. Disponible en: http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Enzyme_Assay/p5459enz.pdf

Smith, E.L.; Chavre, V.J.; Parker, M.J. 1958. Kinetics of papain action. II. Effect of pH on hydrolysis of three substrates. J. of Biological Chemistry 230: 283-93.

Soukup, J. 1970. Vocabulario de los Nombres Vulgares de la Flora Peruana. Edit. Salesiana S.A. Lima, Perú.

Sumner, I.G.; Harris, G.W.; Taylor, M.A.J.; Pickersgill, R.W.; Owen, A.J.; Goodenough, P.W. 1993. Factors effecting the thermostability of cysteine proteinases from Carica papaya. European Journal of Biochemistry 214: 129–134.

Uhlig, H. 1998. Industrial Enzymes and their Applications 1st Edition John Wiley and Sons, New York. pp. 454-456.

Walraevens, V.; Jaziri, M.; Van Beeumen, J.; Schnek, A.G.; Kleinschmidt, T.; Looze, Y. 1993. Isolation and characterization of the cysteine-proteinases from the latex of Carica candamarcensis Hook. Journal of Biological Chemistry 374: 501–506.

Walraevens, V.; Vandermeers-Piret, M.C.; Vandermeers, A.; Gourlet, P.; Robberecht, P. 1999. Isolation and primary structure of the CCI papain-like cysteine proteinases from the latex of Carica candamarcensis Hook. Journal of Biological Chemistry 380: 485–488.

Wang, L.J.; Sun, N.; Terzyan, S.; Zhang, X.J.; Benson, D.R. 2006. A histidine/tryptophan π-stacking interac-tion stabilizes the heme-independent folding core of microsomal apocytochrome b5 relative to that of mitochondrial apocytochrome b5. Biochemistry 45: 13750-13759.

Received September 10, 2016.

Accepted March 05, 2017.

Corresponding author: anaisabelflor@gmail.com (A. Gutiérrez).




DOI: http://dx.doi.org/10.17268/sci.agropecu.2017.01.01

Enlaces refback

  • No hay ningún enlace refback.


Licencia de Creative Commons Scientia Agropecuaria revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Reconocimiento-NoComercial 3.0.

ISSN: 2306-6741 (electrónico); 2077-9917 (impreso)
DOIhttp://dx.doi.org/10.17268/sci.agropecu

Dirección: Av Juan Pablo II s/n. Ciudad Universitaria. Facultad de Ciencias Agropecuarias. Universidad Nacional de Trujillo. Trujillo, Perú.
Contactosci.agropecu@unitru.edu.pe