Impact of land use change and climate on the Brazilian Amazon: a review on carbon stocks and greenhouse gas emissions

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2025.051

Palabras clave:

agriculture, environmental governance, livestock, soil carbon, sustainable practices, tropical soils climate

Resumen

Historically, land-use changes in the Brazilian Amazon, such as the conversion of forests to pastures, have significantly impacted carbon and nitrogen cycles, contributing to greenhouse gas emissions and potentially compromising environmental sustainability. This review explores the effects of these changes on soil carbon and nitrogen stocks, emphasizing the role of sustainable practices and public policies in mitigating environmental impacts. Findings indicate that, although forest-to-pasture conversion may reduce soil organic carbon stocks by up to 11.3%, practices such as agroforestry systems, sustainable pasture management, and crop-livestock-forestry integration (CLFI) have the potential to reverse these effects by promoting carbon sequestration and soil conservation. Public policies such as the Low Carbon Agriculture Plan (ABC Plan) and the Amazon Fund are highlighted as essential pillars for sustainable development in the region. It is concluded that the adoption of sustainable agricultural practices, integrated with robust environmental policies and technological innovation, can transform the Amazon into a global model of balance between economic development and environmental conservation. Future studies should prioritize integrated assessments of carbon stocks, gas emissions, and socioeconomic indicators to support more effective and regionally adapted public policies.

Citas

Abagandura, G. O., Mamo, M., Schacht, W. H., Shropshire, A., & Volesky, J. D. (2024). Soil carbon and nitrogen after eight years of rotational grazing in the Nebraska Sandhills meadows. Geoderma, 442, 116776. https://doi.org/10.1016/j.geoderma.2024.116776

Abreu, N. L., Ribeiro, E. S. D. C., Sousa, C. E. S. D., Moraes, L. M., Oliveira, J. V. C. D., Faria, L. D. A., ... & Silva, T. C. D. (2024). Land use change and greenhouse gas emissions: An explanation about the main emission drivers. Ciência Animal Brasileira, 25, 77646E. https://doi.org/10.1590/1809-6891v25e-77646E

Ahirwal, J., Kumari, S., Singh, A. K., Kumar, A., & Maiti, S. K. (2021). Changes in soil properties and carbon fluxes following afforestation and agriculture in tropical forest. Ecological Indicators, 123, 107354. https://doi.org/10.1016/j.ecolind.2021.107354

Albert, J. S., Carnaval, A. C., Flantua, S. G., Lohmann, L. G., Ribas, C. C., Riff, D., ... & Nobre, C. A. (2023). Human impacts outpace natural processes in the Amazon. Science, 379(6630), eabo5003. https://doi.org/10.1126/science.abo5003

Allan, J. I., Roger, C. B., Hale, T. N., Bernstein, S., Tiberghien, Y., & Balme, R. (2023). Making the Paris Agreement: Historical processes and the drivers of institutional design. Political Studies, 71(4), 629–647. https://doi.org/10.1177/00323217211049294

Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507

Alves, K. J., Pylro, V. S., Nakayama, C. R., et al. (2022). Methanogenic communities and methane emissions from enrichments of Brazilian Amazonia soils under land-use change. Microbiological Research, 265, 127178. https://doi.org/10.1016/j.micres.2022.127178

Amaral, S. S., Costa, M. A. M., Neto, T. G. S., Costa, M. P., Dias, F. F., Anselmo, E., ... & de Carvalho Jr, J. A. (2019). CO2, CO, hydrocarbon gases and PM2.5 emissions on dry season by deforestation fires in the Brazilian Amazonia. Environmental Pollution, 249, 311–320. https://doi.org/10.1016/j.envpol.2019.03.023

Andrade, V. M. S., Cordeiro, I. M. C. C., Schwartz, G., Rangel-Vasconcelos, L. G. T., & Oliveira, F. de A. (2017). Considerações sobre clima e aspectos edafoclímáticos da Mesorregião Nordeste Paraense. In I. M. C. C. Cordeiro, L. G. T. Rangel-Vasconcelos, G. Schwartz, & F. de A. Oliveira (Eds.), Nordeste Paraense: Panorama geral e uso sustentável das florestas secundárias (pp. 61–100). EDUFRA. https://www.alice.cnptia.embrapa.br/alice/handle/doc/1073621

Artaxo, P., Hansson, H., Machado, L., & Rizzo, L. (2022). Tropical forests are crucial in regulating the climate on Earth. PLOS Climate. https://doi.org/10.1371/journal.pclm.0000054

Arruda, M. E., Chaebo, G., & Thiago, F. (2023). Neoliberalismo e desmatamento na Amazônia no governo Jair Bolsonaro: Neoliberalism and deforestation in the Amazon in the Jair Bolsonaro government. Professare, 12(3), e3064–e3064. https://doi.org/10.33362/professare.v12i3.3064

Assis, T. O., Aguiar, A. P. D., Randow, C. v., & Nobre, C. A. (2022). Projections of future forest degradation and CO2 emissions for the Brazilian Amazon. Science Advances, 8(11), eabj3309. https://doi.org/10.1126/sciadv.abj3309

Azevedo, J. C. D., Cardoso, A. D. S., Lage Filho, N. M., Faturi, C., Silva, T. C. D., Domingues, F. N., ... & do Rêgo, A. C. (2024). Effects of agricultural expansion on soil carbon and nitrogen stocks in the Amazon deforestation arc. Soil Systems, 8(1), 25. https://doi.org/10.3390/soilsystems8010025

Baccini, A., Walker, W., Carvalho, L., et al. (2017). Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 358(6360), 230–234. https://doi.org/10.1126/science.aam5962

Badari, C. G., Bernardini, L. E., de Almeida, D. R., Brancalion, P. H., César, R. G., Gutierrez, V., ... & Viani, R. A. (2020). Ecological outcomes of agroforests and restoration 15 years after planting. Restoration Ecology, 28(5), 1135–1144. https://doi.org/10.1111/rec.13171

Bramble, D., Gouveia, G., & Ramnarine, R. (2019). Organic residues and ammonium effects on CO2 emissions and soil quality indicators in limed acid tropical soils. Soil Systems, 3(1), 16. https://doi.org/10.3390/soilsystems3010016

Bogaerts, M., Cirhigiri, L., Robinson, I., Rodkin, M., Hajjar, R., C. C. Junior, Newton, P. (2017). Climate change mitigation through intensified pasture management: Estimating greenhouse gas emissions on cattle farms in the Brazilian Amazon. Journal of Cleaner Production, 162, 1539–1550. https://doi.org/10.1016/J.JCLEPRO.2017.06.130

Brito, T., Fragoso, R., Marques, P., Fernandes-Silva, A., & Aranha, J. (2021, May). LCA of Soybean Supply Chain Produced in the State of Pará, Located in the Brazilian Amazon Biome. Biology and Life Sciences Forum, 3(1), 11. https://doi.org/10.3390/IECAG2021-10072

Bueno, R. S., Marchetti, L., Cocozza, C., Marchetti, M., & Salbitano, F. (2021). Could cattle ranching and soybean cultivation be sustainable? A systematic review and a meta-analysis for the Amazon. IFOREST, 14, 285-298. https://doi.org/10.3832/ifor3779-014

Buscardo, E., Souza, R. C., Meir, P., et al. (2021). Effects of natural and experimental drought on soil fungi and biogeochemistry in an Amazon rain forest. Communications Earth & Environment, 2(1), 55. https://doi.org/10.1038/s43247-021-00124-8

Chen, Q., Long, C., Chen, J., & Cheng, X. (2021). Differential response of soil CO₂, CH₄, and N2O emissions to edaphic properties and microbial attributes following afforestation in central China. Global Change Biology, 27(21), 5657-5669. https://doi.org/10.1111/gcb.15826

Chien, S. C., & Krumins, J. A. (2023). Anthropogenic effects on global soil nitrogen pools. Science of the Total Environment, 902, 166238. https://doi.org/10.1016/j.scitotenv.2023.166238

Chiriacò, M. V., & Valentini, R. (2021). A land-based approach for climate change mitigation in the livestock sector. In EGU General Assembly Conference Abstracts (pp. EGU21-7959). https://doi.org/10.5194/egusphere-egu21-7959

Condé, T. M., Condé, J. D., & Sousa, C. W. L. (2020). Açaí fruit production and carbon stock in managed plantations in Southeast of Roraima. Revista Agro@mbiente On-line, 14, e5849. https://doi.org/10.18227/1982-8470ragro.v14i0.5849

Conrad, R. (2020). Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: A mini review. Pedosphere, 30(5), 563-576. https://doi.org/10.1016/S1002-0160(18)60052-9

Corrêa, D. C. da C., Cardoso, A. da S., Ferreira, M. R., Siniscalchi, D., Toniello, A. D., Lima, G. C. de, Reis, R. A., & Ruggieri, A. C. (2021). Are CH4, CO2, and N2O emissions from soil affected by the sources and doses of N in warm-season pasture? Atmosphere, 12(6), 697. https://doi.org/10.3390/atmos12060697

Correa, J., Cisneros, E., Börner, J., et al. (2020). Evaluating REDD+ at subnational level: Amazon fund impacts in Alta Floresta, Brazil. Forest Policy and Economics, 116, 102178. https://doi.org/10.1016/j.forpol.2020.102178

Cotrufo, M. F., & Lavallee, J. M. (2022). Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. Advances in Agronomy, 172, 1–66. https://doi.org/10.1016/bs.agron.2021.11.002

Cruz, B. G. A., & Rocha, C. G. S. (2019). Changes in practices of organic certified cocoa farmers in Southwest Paraense, Eastern Amazonia. Research, Society and Development, 8(6), e49861087. https://doi.org/10.33448/rsd-v8i6.1087

Cui, D., Liang, S., Wang, D., & Liu, Z. (2021). A 1 km global dataset of historical (1979–2013) and future (2020–2100) Köppen–Geiger climate classification and bioclimatic variables. Earth System Science Data, 13(11), 5087–5114. https://doi.org/10.5194/essd-13-5087-2021

Cunha, M. A., & Costa, S. M. F. (2020). Mapeamento da palmeira de açaí (Euterpe oleracea Mart.) na floresta Amazônica utilizando imagem de satélite de alta resolução espacial. Revista Espinhaço, 9(2), 40–49. https://doi.org/10.5281/zenodo.4432830

Dai, Z., Yu, M., Chen, H., et al. (2020). Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biology, 26(9), 5267–5276. https://doi.org/10.1111/gcb.15211

Danielson, R. E., & Rodrigues, J. L. M. (2022). Impacts of land-use change on soil microbial communities and their function in the Amazon Rainforest. Advances in Agronomy, 175, 179–258. https://doi.org/10.1016/bs.agron.2022.04.001

Dean, J. F., Middelburg, J. J., Röckmann, T., et al. (2018). Methane feedbacks to the global climate system in a warmer world. Reviews of Geophysics, 56(1), 207–250. https://doi.org/10.1002/2017RG000559

Deng, X., Ma, W., Ren, Z., et al. (2020). Spatial and temporal trends of soil total nitrogen and C/N ratio for croplands of East China. Geoderma, 361, 114035. https://doi.org/10.1016/j.geoderma.2019.114035

De Oliveira, D. C., Maia, S. F., Freitas, R. C. A., et al. (2022). Changes in soil carbon and soil carbon sequestration potential under different types of pasture management in Brazil. Regional Environmental Change, 22(87). https://doi.org/10.1007/s10113-022-01945-9

Dionizio, E. A., Pimenta, F. M., Lima, L. B., & Costa, M. H. (2020). Carbon stocks and dynamics of different land uses on the Cerrado agricultural frontier. PLOS ONE, 15(11), e0241637. https://doi.org/10.1371/journal.pone.0241637

Dizon, L. S. H., Bertrand, R. S., Holmes, W. E., et al. (2023). Analysis of methanotroph populations from various sources for production of high-value products. Engineering Proceedings, 31(1). https://doi.org/10.3390/ASEC2022-13953

Domingues, S. C. O., Silva, I. C. O., Santos, J. S., Yamashita, O. M., & Carvalho, M. A. C. (2020). Agricultural activity: Legal Amazon: Environmental degradation. Scientific Electronic Archives, 13(8), 104. https://doi.org/10.36560/13820201035

Flores, B. M., Oliveira, R. S., Rowland, L., Quesada, C. A., & Lambers, H. (2020). Editorial special issue: plant-soil interactions in the Amazon rainforest. Plant and Soil, 450(1–2), 1–9. https://doi.org/10.1007/s11104-020-04544-x

Freitas, I. C. de, Ribeiro, J. M., Araújo, N. C. A., Santos, M. V., Sampaio, R. A., Fernandes, L. A., Azevedo, A. M., Feigl, B. J., Cerri, C. E. P., & Frazão, L. A. (2020). Agrosilvopastoral systems and well-managed pastures increase soil carbon stocks in the Brazilian Cerrado. Rangeland Ecology & Management, 73(6), 776–785. https://doi.org/10.1016/j.rama.2020.08.001

Gasser, T., Crepin, L., Quilcaille, Y., et al. (2020). Historical emissions from land use and land cover change and their uncertainty. Biogeosciences, 17(15), 4075–4101. https://doi.org/10.5194/bg-17-4075-2020

Gatti, L. V., Basso, L. S., Miller, J. B., et al. (2021). Amazonia as a carbon source linked to deforestation and climate change. Nature, 595(7867), 388–393. https://doi.org/10.1038/s41586-021-03629-6

Gelaye, Y., & Getahun, S. (2024). A review of the carbon sequestration potential of fruit trees and their implications for climate change mitigation: The case of Ethiopia. Cogent Food & Agriculture, 10(1). https://doi.org/10.1080/23311932.2023.2294544

Gomes, C. V. A. (2018). Ciclos econômicos do extrativismo na Amazônia na visão dos viajantes naturalistas. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas, 13, 129–146. https://doi.org/10.1590/1981.81222018000100007

Gomes, L. C., Faria, R. M., de Souza, E., et al. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340, 337–350. https://doi.org/10.1016/j.geoderma.2019.01.011

Gomes, M. F., Vasconcelos, S. S., Viana‐Junior, A. B., et al. (2021). Oil palm agroforestry shows higher soil permanganate oxidizable carbon than monoculture plantations in Eastern Amazonia. Land Degradation & Development, 32(15), 4313–4326. https://doi.org/10.1002/ldr.4038

Gomes, J. M. S., de Figueiredo, L. F. G., Rodrigues, C. C., de Castro, G. L. S., de Jesus Zissou, A., Andrade, E. D. S. S., ... & Chase, O. A. (2024). Heading for sustainability in the Amazon: A systemic approach and proposals to combat deforestation. Revista de Gestão Social e Ambiental, 18(1), e07518-e07518. https://doi.org/10.24857/rgsa.v18n1-185

Gu, X., Weng, S., Li, Y., & Zhou, X. (2022). Effects of water and fertilizer management practices on methane emissions from paddy soils: Synthesis and perspective. International Journal of Environmental Research and Public Health, 19(12), 7456. https://doi.org/10.3390/ijerph19127324

Hanna, E., & Hall, R. J. (2020). Earth, air, fire and ice: Exploring links between human-induced global warming, polar ice melt and local scale extreme weather. In S. Myers, S. Hemstock, & E. Hanna (Eds.), Science, faith and the climate crisis (pp. 47–64). https://doi.org/10.1108/978-1-83982-984-020201006

Hoffmann, E. L., Dallacort, R., Carvalho, M. A. C., Yamashita, O. M., & Barbieri, J. D. (2018). Variabilidade das chuvas no Sudeste da Amazônia Paraense, Brasil (Rainfall variability in southeastern Amazonia, Paraense, Brazil). Revista Brasileira de Geografia Física, 11(4), 1251–1263. https://doi.org/10.26848/rbgf.v11.4.p1251-1263

Hou, D. (2021). Sustainable soil management and climate change mitigation. Soil Use & Management, 37(2). https://doi.org/10.1111/sum.12718

Hong, T., Wu, J., Kang, X., Yuan, M., & Duan, L. (2022). Impacts of different land use scenarios on future global and regional climate extremes. Atmosphere, 13(6), 995. https://doi.org/10.3390/atmos13060995

Hu, X., Næss, J. S., Iordan, C. M., et al. (2021). Recent global land cover dynamics and implications for soil erosion and carbon losses from deforestation. Anthropocene, 34, 100291. https://doi.org/10.1016/j.ancene.2021.100291

Ibiapina, A., Gualberto, L. da S., Dias, B. B., et al. (2022). Essential and fixed oils from Amazonian fruits: properties and applications. Critical Reviews in Food Science and Nutrition, 62(32), 8842–8854. https://doi.org/10.1080/10408398.2021.1935702

Instituto Nacional de Pesquisas Espaciais. (INPE) (2024). Monitoramento do desmatamento da Amazônia Legal por satélite – PRODES: Nota técnica final 2024. https://www.gov.br/mcti/pt-br/acompanhe-o- mcti/noticias/2024/11/20241106PRODES_Final1.pdf

Intergovernmental Panel on Climate Change (IPCC). (2019). Task Force on National Greenhouse Gas Inventories. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/

Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. Genebra: IPCC. Recuperado de https://www.ipcc.ch/report/ar6/syr/

Jones, A. R., Gupta, V. V. S. R., Buckley, S., et al. (2019). Drying and rewetting effects on organic matter mineralisation of contrasting soils after 36 years of storage. Geoderma, 342, 12–19. https://doi.org/10.1016/j.geoderma.2019.01.001

Kohler, T. A., & Rockman, M. (2020). The IPCC: A Primer for Archaeologists. American Antiquity, 85(4), 627–651. https://doi.org/10.1017/aaq.2020.68

Kooch, Y., Piri, A. S., & Tilaki, G. A. D. (2021). Tree cover mediates indices related to the content of organic matter and the size of microbial population in semi-arid ecosystems. Journal of Environmental Management, 292, 112144. https://doi.org/10.1016/j.jenvman.2021.112144

Kudeyarov, V. N. (2020). Nitrous Oxide Emission from Fertilized Soils: An Analytical Review. Eurasian Soil Science, 53(10), 1396–1407. https://doi.org/10.1134/S1064229320100105

Lage Filho, N. M., Cardoso, A. da S., Azevedo, J. C. de, et al. (2022). Land use, temperature, and nitrogen affect nitrous oxide emissions in Amazonian soils. Agronomy, 12(7), 1608. https://doi.org/10.3390/agronomy12071608

Lage Filho, N. M., Cardoso, A. da S., Azevedo, J. C. de, et al. (2023). How does land use change affect the methane emission of soil in the Eastern Amazon? Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1244152

Lal, R., Monger, C., Nave, L., & Smith, P. (2021). The role of soil in regulation of climate. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1834), 20210084. https://doi.org/10.1098/rstb.2021.0084

Lamb, W. F., Wiedmann, T., Pongratz, J., et al. (2021). A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters, 16(7), 073005. https://doi.org/10.1088/1748-9326/abee4e

Lapola, D. M., Pinho, P., Barlow, J., Aragão, L. E. O. C., Berenguer, E., Carmenta, R., Liddy, H. M., Seixas, H., Silva, C. V. J., et al. (2023). The drivers and impacts of Amazon forest degradation. Science, 379(6630), eabp8622. https://doi.org/10.1126/science.abp8622

Leul, Y., Assen, M., Damene, S., & Legass, A. (2023). Effects of land-use dynamics on soil organic carbon and total nitrogen stock, Western Ethiopia. Applied and Environmental Soil Science, 2023, 1–12. https://doi.org/10.1155/2023/5080313

Li, Y., Ma, J., Gao, C., et al. (2021). Anaerobic ammonium oxidation (anammox) is the main microbial N loss pathway in alpine wetland soils of the Qinghai-Tibet Plateau. Science of The Total Environment, 787, 147714. https://doi.org/10.1016/j.scitotenv.2021.147714

Lian, X., Xu, L., Chen, M., et al. (2019). Carbon dioxide captured by metal-organic frameworks and its subsequent resource utilization strategy: A review and prospect. Journal of Nanoscience and Nanotechnology, 19(6), 3456–3470. https://doi.org/10.1166/jnn.2019.16647

Liu, L., Estiarte, M., & Peñuelas, J. (2019). Soil moisture as the key factor of atmospheric CH₄ uptake in forest soils under environmental change. Geoderma, 353, 1–10. https://doi.org/10.1016/j.geoderma.2019.113920

Liu, L., Zheng, N., Yu, Y., Zheng, Z., & Yao, H. (2024). Soil carbon and nitrogen cycles driven by iron redox: A review. Science of The Total Environment, 918, 170660. https://doi.org/10.1016/j.scitotenv.2024.170660

Lobus, N. V., Knyazeva, M. A., Popova, A. F., & Kulikovskiy, M. S. (2023). Carbon footprint reduction and climate change mitigation: A review of the approaches, technologies, and implementation challenges. C, 9(4), 120. https://doi.org/10.3390/c9040120

Lustosa Filho, J. F., de Oliveira, H. M. R., de Souza Barros, V. M., dos Santos, A. C., & de Oliveira, T. S. (2024). From forest to pastures and silvopastoral systems: Soil carbon and nitrogen stocks changes in northeast Amazônia. Science of The Total Environment, 908, 168251. https://doi.org/10.1016/j.scitotenv.2023.168251

Marengo, J. A., Souza Jr, C. M., Thonicke, K., Burton, C., Halladay, K., Betts, R. A., ... & Soares, W. R. (2018). Changes in climate and land use over the Amazon region: current and future variability and trends. Frontiers in Earth Science, 6, 228. https://doi.org/10.3389/feart.2018.00228

Machado, P. V. F., Farrell, R. E., Deen, W., et al. (2021). Contribution of crop residue, soil, and fertilizer nitrogen to nitrous oxide emissions varies with long-term crop rotation and tillage. Science of The Total Environment, 767, 145107. https://doi.org/10.1016/j.scitotenv.2021.145107

Malhi, Y., Franklin, J., Seddon, N., et al. (2020). Climate change and ecosystems: threats, opportunities and solutions. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1794), 20190104. https://doi.org/10.1098/rstb.2019.0104

Midwood, A. J., Hannam, K. D., Gebretsadikan, T., Emde, D., & Jones, M. D. (2021). Storage of soil carbon as particulate and mineral associated organic matter in irrigated woody perennial crops. Geoderma, 403, 115185. https://doi.org/10.1016/j.geoderma.2021.115185

Miller, G. A., Rees, R. M., Griffiths, B. S., & Cloy, J. M. (2020). Isolating the effect of soil properties on agricultural soil greenhouse gas emissions under controlled conditions. Soil Use and Management, 36(2), 285–298. https://doi.org/10.1111/sum.12552

Monteiro, A., Barreto-Mendes, L., Fanchone, A., Morgavi, D. P., Pedreira, B. C., Magalhães, C. A., ... & Eugène, M. (2024). Crop-livestock-forestry systems as a strategy for mitigating greenhouse gas emissions and enhancing the sustainability of forage-based livestock systems in the Amazon biome. Science of The Total Environment, 906, 167396. https://doi.org/10.1016/j.scitotenv.2023.167396

Nagano, H., Atarashi-Andoh, M., Tanaka, S., et al. (2023). Stable C and N isotope abundances in water-extractable organic matter from air-dried soils as potential indices of microbially utilized organic matter. Frontiers in Forests and Global Change, 6. https://doi.org/10.3389/ffgc.2023.1228053

Nascimento, A. F., de Oliveira, C. M., Pedreira, B. C., Pereira, D. H., & Rodrigues, R. R. D. A. (2021). Nitrous oxide emissions and forage accumulation in the Brazilian Amazon forage‐livestock systems submitted to N input strategies. Grassland Science, 67(1), 63–72. https://doi.org/10.1111/grs.12287

Okebalama, C. B., Igwe, C. A., & Onunwa, A. O. (2021). Enumeration of carbon and nitrogen contents of water-stable aggregates in layers of topsoils from cultivated and adjacent bush-fallow loamy soils. AgroScience Journal, 21(1), 138–148. https://doi.org/10.4314/as.v21i1.16

Oliveira, D. M. da S., Tavares, R. L. M., Loss, A., et al. (2023). Climate-smart agriculture and soil C sequestration in Brazilian Cerrado: a systematic review. Revista Brasileira de Ciência do Solo, 47. https://doi.org/10.36783/18069657rbcs20220055

Pacheco, K. A., Reis, A. C., Bresciani, A. E., Nascimento, C. A. O., & Alves, R. M. B. (2019). Assessment of the Brazilian market for products by carbon dioxide conversion. Frontiers in Energy Research, 7. https://doi.org/10.3389/fenrg.2019.00075

Paracampo, Á. E. N. P., Figueiredo Abreu, L., Filgueira de Lemos, O., & Castanheira Lima Both, J. P. (2022). Quality of black pepper produced in northeastern Pará. Revista de Agricultura Neotropical, 9(3), e7020. https://doi.org/10.32404/rean.v9i3.7020

Patel, K. F., Fansler, S. J., Campbell, T. P., et al. (2021). Soil texture and environmental conditions influence the biogeochemical responses of soils to drought and flooding. Communications Earth & Environment, 2(1), 127. https://doi.org/10.1038/s43247-021-00198-4

Pereira, A. dos R. (2022). The struggle for land in the Eastern Amazon. Latin American Perspectives, 49(5), 132–145. https://doi.org/10.1177/0094582X221106985

Piao, R. de C. S., Silva, V. L. dos S., Navarro del Aguila, I., & Burgos Jiménez, J. de. (2021). Green growth and agriculture in Brazil. Sustainability, 13(3), 1162. https://doi.org/10.3390/su13031162

Prosser, J. I., Hink, L., Gubry‐Rangin, C., & Nicol, G. W. (2019). Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies. Global Change Biology, 26(1), 103–118. https://doi.org/10.1111/gcb.14877

Quesada, C. A., Paz, C., Mendoza, E. O., Phillips, O. L., Saiz, G., & Lloyd, J. (2020). Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. SOIL, 6(1), 53–88. https://doi.org/10.5194/soil-6-53-2020

Quintão, J. M. B., Cantinho, R. Z., Albuquerque, E. R. G. M., Maracahipes, L., & Bustamante, M. M. C. (2021). Mudanças do uso e cobertura da terra no Brasil, emissões de GEE e políticas em curso. Ciência e Cultura, 73(1). https://doi.org/10.21800/2317-66602021000100004

Rakesh, S. S., Davamani, V., Banu, K. S. P., et al. (2020). Assessing the potential of Elaeis guineensis plantations for carbon sequestration and fresh fruit bunch yield in Coimbatore, Tamil Nadu. Current Journal of Applied Science and Technology, 80–90. https://doi.org/10.9734/CJAST/2020/v39i630562

Ramineh, A., Jourgholami, M., Etemad, V., Jafari, M., & Picchio, R. (2023). Effect of different vegetation restoration on recovery of compaction-induced soil degradation in Hyrcanian mixed forests: Influence on soil C and N pools and enzyme activities. Forests, 14(3), 603. https://doi.org/10.3390/f14030603

Rego, C. A. R. M., de Oliveira, P. S. R., Muniz, L. C., et al. (2023). Pasture recovery and their impacts on the levels, stocks, and origin of carbon and nitrogen in plinthosol areas in the eastern Amazon. Environmental Earth Sciences, 82, 419. https://doi.org/10.1007/s12665-023-11119-3

Rodrigues, A. A., Macedo, M. N., Silvério, D. V., Maracahipes, L., Coe, M. T., Brando, P. M., Shimbo, J. Z., Rajão, R., Soares-Filho, B., & Bustamante, M. M. C. (2022). Cerrado deforestation threatens regional climate and water availability for agriculture and ecosystems. Global Change Biology, 28(1), 16386. https://doi.org/10.1111/gcb.16386

Rodrigues, J. I. M., Rocha Martins, W. B., Lopes da Silva, L., Cipriano Castro, J., & de Assis Oliveira, F. (2024). Agricultura itinerante na Amazônia: importância, impactos e perspectivas futuras. Nativa, 12(3). https://doi.org/10.31413/nat.v12i3.17428

Rosa, V. A., & Neto, J. P. S. (2019). Atributos físicos e estoque de carbono em sistemas agroflorestais nos Cerrados do Oeste da Bahia. Revista Brasileira de Geografia Física, 12, 2660-2671. https://doi.org/10.26848/RBGF.V12.7.P2660-2671

Santos, C. A., Rezende, C. de P., Machado Pinheiro, É. F., Pereira, J. M., Alves, B. J. R., Urquiaga, S., & Boddey, R. M. (2019). Changes in soil carbon stocks after land-use change from native vegetation to pastures in the Atlantic forest region of Brazil. Geoderma, 337, 394–401. https://doi.org/10.1016/j.geoderma.2018.09.045

Santos, P. Z. F., Crouzeilles, R., & Sansevero, J. B. B. (2019). Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. Forest Ecology and Management, 433, 140–145. https://doi.org/10.1016/j.foreco.2018.10.064

Sharififar, A., Minasny, B., Arrouays, D., et al. (2023). Soil inorganic carbon, the other and equally important soil carbon pool: Distribution, controlling factors, and the impact of climate change. Advances in Agronomy, 178, 165–231. https://doi.org/10.1016/bs.agron.2022.11.005

Schroth, G., Garcia, E., Griscom, B. W., Teixeira, W. G., & Barros, L. P. (2016). Commodity production as restoration driver in the Brazilian Amazon? Pasture re-agro-forestation with cocoa (Theobroma cacao) in southern Pará. Sustainability Science, 11(2), 277–293. https://doi.org/10.1007/s11625-015-0330-8

Silva, D. S., Monteiro, A., Pedreira, B. C., Mombach, M. A., Pereira, D. H., Rodrigues, R. A., & Matos, E. S. (2024). Enhancing forage–livestock system productivity and mitigating greenhouse gas emissions via sustainable pasture management of two Brachiaria cultivars. Crop and Pasture Science, 75(9). https://doi.org/10.1071/CP24054

Sistema de Estimativa de Emissões de Gases de Efeito Estufa (SEEG). Sistema de Estimativa de Emissões de Gases de Efeito Estufa. Disponível em: <https://plataforma.seeg.eco.br/>. Acessado em: 08 de janeiro de 2025.

Segnini, A., Xavier, A. A. P., Otaviani-Junior, P. L., & Oliveira, T. S. (2019). Soil carbon stock and humification in pastures under different levels of intensification in Brazil. Scientia Agricola, 76(1), 33–40. https://doi.org/10.1590/1678-992X-2017-0131

Shaaban, M., Peng, Q., Bashir, S., Hu, R., Lin, S., & Wu, Y. (2019). Restoring effect of soil acidity and Cu on N₂O emissions from an acidic soil. Journal of Environmental Management, 250, 109535. https://doi.org/10.1016/j.jenvman.2019.109535

Soares, M., & Rousk, J. (2019). Microbial growth and carbon use efficiency in soil: Links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biology and Biochemistry, 131, 195–205. https://doi.org/10.1016/j.soilbio.2019.01.010

Souza, L. F., Alvarez, D. O., Domeignoz-Horta, L. A., Gomes, F. V., de Souza Almeida, C., Merloti, L. F., ... & Tsai, S. M. (2021). Maintaining grass coverage increases methane uptake in Amazonian pasture soils. bioRxiv, 2021-04. https://doi.org/10.1101/2021.04.26.441496

Souza, W. S. dos, da Costa Soares, S., Homem, B. G. C., de Lima, Í. B. G., Borges, L. P. C., Casagrande, D. R., ... & Boddey, R. M. (2024). Soil carbon sequestration under N fertilized or mixed legume-grass pastures depends on soil type and prior land-use. Geoderma Regional, 39, e00876. https://doi.org/10.1016/j.geodrs.2024.e00876

Tahat, M. M., Alananbeh, K. M., Othman, Y. A., & Leskovar, D. I. (2020). Soil health and sustainable agriculture. Sustainability, 12(12), 4859. https://doi.org/10.3390/su12124859

Tonucci, R. G., Vogado, R. F., Silva, R. D., & Silva, M. L. N. (2023). Agroforestry system improves soil carbon and nitrogen stocks in depth after land-use changes in the Brazilian semi-arid region. Revista Brasileira de Ciência do Solo, 47, e0220120. https://doi.org/10.36783/18069657rbcs20220124

Vignoli, C. P., Leeuwen, J., Miller, R. P., & Cardoso, E. J. B. N. (2022). Soil management in indigenous agroforestry systems of guarana (Paullinia cupana Kunth) of the Sateré-Mawé ethnic group, in the Lower Amazon River region. Sustainability, 14(22), 15464. https://doi.org/10.3390/su142215464

Wang, J., Luo, Y., Quan, Q., & Li, Y. (2021). Effects of warming and clipping on CH₄ and N₂O fluxes in an alpine meadow. Agricultural and Forest Meteorology, 297, 108278. https://doi.org/10.1016/j.agrformet.2020.108278

Wang, G., Liu, Y., Yan, Z., Chen, D., Fan, J., & Ghezzehei, T. A. (2023). Soil physics matters for the land–water–food–climate nexus and sustainability. European Journal of Soil Science. https://doi.org/10.1111/ejss.13444

Watrin, O. D. S., Silva, T. M. D., Porro, R., Oliveira Jr, M. M. D., & Belluzzo, A. P. (2022). Dinâmica do uso e cobertura da terra em Projeto de Desenvolvimento Sustentável na região da rodovia Transamazônica, Pará. Sociedade & Natureza, 32, 88-100. https://doi.org/10.14393/SN-v32-2020-45146

Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., ... & Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782

WMO. (2023). WMO Global Annual to Decadal Climate Update: Target Years: 2023 and 2023–2027. WMO Global Annual to Decadal Climate Update.

Ye, C., Chen, C., Butler, O. M., Rashti, M. R., Esfandbod, M., Du, M., & Zhang, Q. (2019). Spatial and temporal dynamics of nutrients in riparian soils after nine years of operation of the Three Gorges Reservoir, China. Science of the Total Environment, 664, 841–850. https://doi.org/10.1016/j.scitotenv.2019.02.036

Zeferino, L. B., Lustosa Filho, J. F., dos Santos, A. C., Cerri, C. E. P., & Oliveira, T. S. de. (2022). Soil carbon and nitrogen stocks following forest conversion to long-term pasture in Amazon rainforest-Cerrado transition environment. SSRN. https://doi.org/10.2139/ssrn.4237262

Zhang, M., Li, D., Wang, X., Abulaiz, M., Yu, P., Li, J., ... & Jia, H. (2021). Conversion of alpine pastureland to artificial grassland altered CO₂ and N₂O emissions by decreasing C and N in different soil aggregates. PeerJ, 9, e11807. https://doi.org/10.7717/peerj.11807

Zhang, Y., Wang, J., Dai, S., et al. (2019). The effect of C:N ratio on heterotrophic nitrification in acidic soils. Soil Biology and Biochemistry, 137, 107562. https://doi.org/10.1016/j.soilbio.2019.107562

Descargas

Publicado

2025-09-01

Cómo citar

Moraes, L. M., de Azevedo, J. C., Filho, N. M. L., de Oliveira, J. V. C., Abreu, N. L., Junior, F. P. A., da Silva, T. C., Ruggieri, A. C., Faturi, C., & do Rêgo, A. C. (2025). Impact of land use change and climate on the Brazilian Amazon: a review on carbon stocks and greenhouse gas emissions. Scientia Agropecuaria, 16(4), 671-688. https://doi.org/10.17268/sci.agropecu.2025.051

Número

Sección

Artículos de Revisión