LiDAR imagery-based relief interpretation for soil organic carbon (SOC) estimation in the Quaternary Sumbing and Tertiary Kulon Progo Volcano Transition Zone, Central Java, Indonesia

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2025.046

Palabras clave:

Relief, LiDAR, soil organic carbon, volcanic transition zone

Resumen

Typically, the transition zone of quaternary and tertiary volcanoes is a potential area for agricultural development but is prone to landslides. Landslide occurrences and the use of former landslide zones exhibit a distinct soil organic carbon (SOC) distribution, necessitating analysis to sustain agricultural output. Laboratory SOC measurements on landscape size are not expedient, necessitating the development of an estimating method for representation. This study aims to analyze the relationship between relief and SOC using LiDAR (Light Detection and Ranging) data. LiDAR acquisition was carried out to identify relief units as units of analysis. Soil sample measurements were carried out in the laboratory with the parameters analyzed including pH, Bulk Density, Moisture Content, Organic Carbon, Organic Matter, N-total, CN Ratio and Cation Exchange Capacity. The results showed that SOC and relief had R2 = 0.89 in the upper layer (0 – 20 cm) and 0.86 in the lower layer (20 - 40 cm). Relief has a high correlation with soil characteristics at the top and bottom of soil depths. It is because of relatively stable elevation and relatively dynamic land cover that SOC is spread out in a clustered way. This research can be used as a basis for agricultural land management, especially in areas prone to landslides.

Citas

Abebe, M. H., Gebremichael, D., & Haile, M. (2025). Soil properties under different land uses and slope gradients: Implications for sustainable land management in the Tach Karnuary watershed, Northwestern Ethiopia. Frontiers in Environmental Science, 13, 1518068. https://doi.org/10.3389/fenvs.2025.1518068

Anggraeni, R., Mahrup, M., Kusnarta, I. G. M., & Silawibawa, P. (2022). Variasi regim lengas dan suhu tanah pada lahan yang mengalami penutupan awan rendah berbasis peta terra modis di pulau lombok. Journal of Soil Quality and Management, 1(1), 7-15. https://doi.org/10.29303/jsqm.v1i1.9

Belandina, N., Abolla, C., Maulana, E., Setiawan, M. A., Haryono, E., Harini, R., Sartohadi, J., Argian, R., & Putri, P. (2025). Agricultural land optimization to supports sustainable shallot production on fluvial and structural landforms. Ecological Engineering & Environmental Technology, 26(3), 183–194. https://doi.org/10.12912/27197050/199801

Dong, J., Zhou, K., Jiang, P., Wu, J., & Fu, W. (2021). Revealing horizontal and vertical variation of soil organic carbon, soil total nitrogen and C:N ratio in subtropical forests of southeastern China. Journal of Environmental Management, 289, 112483. https://doi.org/10.1016/j.jenvman.2021.112483

Elaksher, A., Ali, T., & Alharthy, A. (2023). A Quantitative Assessment of LIDAR Data Accuracy. Remote. Sens., 15, 442. https://doi.org/10.3390/rs15020442

Fauziah, L., Hanudin, E., & Utami, S. (2022). Competitive adsorption of phosphate with sulfate, humic acid, and fulvic acid by allophane in different parent materials in Central Java. Ilmu Pertanian (Agricultural Science), 7(2), 121-131. https://doi.org/10.22146/ipas.72050

Gerke, J. (2022). The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Systems, 6(33). https://doi.org/10.3390/soilsystems6020033

He, J., Zhang, Y., Liu, M., Chen, L., Man, W., Fang, H., Li, X., Yin, X., Lian, J., Bai, W., & Li, F. (2025). Prediction of soil organic carbon content in Spartina alterniflora by using UAV multispectral and LiDAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 18(4), 4895–4910. https://doi.org/10.1109/JSTARS.2025.3534238

Hu, L., Huang, R., Zhou, L., Qin, R., He, X., Deng, H., … & Li, K. (2023). Effects of magnesium-modified biochar on soil organic carbon mineralization in citrus orchard. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1109272

Huang, J., Xia, T., Shuai, Y., & Zhu, H. (2023). Assessing the Performance of GEDI LiDAR Data for Estimating Terrain in Densely Forested Areas. IEEE Geoscience and Remote Sensing Letters, 20, 1–5. https://doi.org/10.1109/LGRS.2023.3306875

Huang, X., Ibrahim, M. M., Luo, Y., Jiang, L., Chen, J., & Hou, E. (2024). Land Use Change Alters Soil Organic Carbon: Constrained Global Patterns and Predictors. Earth’s Future, 12(5), 1–16. https://doi.org/10.1029/2023EF004254

Kim, Y. J., Jung, J. Y., & Mishra, U. (2021). Managing Soil Organic Carbon for Climate Change Mitigation and Food Security. In Soil Organic Carbon and Feeding the Future, 1st edition, 25–46. CRC Press. https://doi.org/10.1201/9781003243090

Kołodyńska‐Gawrysiak, R., Gawrysiak, L., Poesen, J., & Plak, A. (2023). The impact of natural closed depressions on soil organic carbon storage in eroded loess landscapes of east poland. Land Degradation & Development, 34(17), 5273-5292. https://doi.org/10.1002/ldr.4843

Kutsch, W. L., Bahn, M., & Heinemeyer, A. (Eds.). (2010). Soil Carbon Dynamics: An Integrated Methodology. Cambridge: Cambridge University Press.

Li, Q., Li, A., Dai, T., Fan, Z., Luo, Y., Li, S., Yuan, D., Zhao, B., Tao, Q., Wang, C., Li, B., Gao, X., Li, Y., Li, H., & Wilson, J. (2020). Depth‐dependent soil organic carbon dynamics of croplands across the Chengdu Plain of China from the 1980s to the 2010s. Global Change Biology, 26, 4134-4146. https://doi.org/10.1111/gcb.15110

Liptzin, D., Norris, C. E., Cappellazzi, S. B., Mac Bean, G., Cope, M., Greub, K. L., ... & Honeycutt, C. W. (2022). An evaluation of carbon indicators of soil health in long-term agricultural experiments. Soil Biol. Biochem., 172, 108708. https://doi.org/10.1016/j.soilbio.2022.108708

Miloš, B., & Bensa, A. (2016). Fractal analysis of spatial variability of organic carbon in anthropogenic soils. Case study: Kastela Bay, Croatia. Agriculture and Forestry, 62(1), 373-381. https://doi.org/10.17707/AgricultForest.62.1.39

Mulyani, O., Machfud, Y., & Solihin, M. (2023). Fungsi hubungan sifat kimia tanah dan penggunaan pestisida dengan kandungan kadmium pada lahan sawah. Jurnal Agrikultura, 34(2), 315. https://doi.org/10.24198/agrikultura.v34i2.46370

Paz Salazar, M., Villarreal, R., Alberto Lozano, L., Florencia Otero, M., Guillermo Polich, N., Lautaro Bellora, G., Germán Soracco, C., & María Paz, S. (2020). Soil organic carbon. Stratification and spatial variation of different fractions in an Argiudoll under no tillage. Revista de la Facultad de Agronomía, La Plata, 119(2), 1–11. https://doi.org/10.24215/16699513e053

Priyono, K. D., Sunarto, J. Sartohadi, & dan Sudibyakto. (2011). Tipologi pedogeomorfik longsorlahan di Pegunungan Menoreh Kabupaten Kulonprogo, Daerah Istimewa Yogyakarta. Forum Geografi, 1, 67-84.

Qiao, Y., Wang, J., Liu, H., Huang, K., Yang, Q., Lu, R., Yan, L., Wang, X., & Xia, J. (2020). Depth-dependent soil C-N-P stoichio-metry in a mature subtropical broadleaf forest. Geoderma, 370, 114357. https://doi.org/10.1016/j.geoderma.2020.114357.

Rasel, S. M. M., Groen, T. A., Hussin, Y. A., & Diti, I. J. 2017. Proxies for soil organic carbon derived from remote sensing. International Journal of Applied Earth Observation and Geoinformation, 59, 157–166. https://doi.org/10.1016/j.jag.2017.03.004

Sartohadi, J., Suratman., Jamulya & Dewi, N. I. S. (2012). Pengantar Geografi Tanah. Pustaka Pelajar.

Satriawan, H., Fuady, Z., & Mayani, N. (2017). Soil conservation by vegetative systems in oil palm cultivation. Polish Journal of Soil Science, 49(2), 223. https://doi.org/10.17951/pjss.2016.49.2.223

Setiawan, T., Isnaini, S., Asghaf, N., & Effendi, I. (2019). Karakteristik interaksi air - CO2 - CaCO3 dan analisis sistem aliran air tanah karst musim kemarau di kab. gunungkidul, daerah istimewa yogyakarta. Riset Geologi Dan Pertambangan, 29(2), 171-183.

Slessarev, E., Chadwick, O. A., Nuccio, E., & Pett‐Ridge, J. (2021). Rock weathering controls the potential for soil carbon storage at a continental scale. Biogeochemistry, 157(1), 1-13. https://doi.org/10.1007/s10533-021-00859-8

SNI 7724. (2011). Pengukuran dan penghitungan cadangan karbon, Pengukuran lapangan untuk penaksiran cadangan karbon hutan (ground based forest carbon accounting). BSN. Jakarta.

Turner, A. (2018). Social and environmental impacts of landslides. Innovative Infrastructure Solutions, 3, 1-25. https://doi.org/10.1007/s41062-018-0175-y.

Wu, S., Chui, T., Chen, L., & Chow, C. (2023). Modelling sediment trapping in vegetative filter strips on steep slopes. Hydrological Processes, 37(1). https://doi.org/10.1002/hyp.14793

Zhang, G., Chen, Q., Zhao, Z., Zhang, X., Chao, J., Zhou, D., Chai, W., Yang, H., Lai, Z., & He, Y. (2023). Nickel grade inversion of lateritic nickel ore using WorldView-3 data incorporating geospatial location information: A case study of North Konawe, Indonesia. Remote Sensing, 15(15), 3756. https://doi.org/10.3390/rs15153756

Zhao, X. F., Gao, S., Lu, D., Chen, X., Feng, W., Wang, Y., … & Wang, H. (2021). Analysis of mechanisms of soil potassium‐holding capacity using different soils of china. Agronomy Journal, 114(1), 825-834. https://doi.org/10.1002/agj2.20961

Descargas

Publicado

2025-08-18

Cómo citar

Fuadah, A. M., Sartohadi, J., & Pulungan, N. A. H. J. (2025). LiDAR imagery-based relief interpretation for soil organic carbon (SOC) estimation in the Quaternary Sumbing and Tertiary Kulon Progo Volcano Transition Zone, Central Java, Indonesia. Scientia Agropecuaria, 16(4), 607-616. https://doi.org/10.17268/sci.agropecu.2025.046

Número

Sección

Artículos originales