Agronomic, physiological, and phytochemical responses of physalis to pre- and post-emergence herbicides
DOI:
https://doi.org/10.17268/sci.agropecu.2025.043Palabras clave:
Herbicide selectivity, Fruit quality, Physalis peruviana, herbicides, phytotoxicityResumen
Cape gooseberry (Physalis peruviana L.) is a fruit crop with increasing economic and functional relevance, yet limited research exists on weed management practices for this species. This study aimed to evaluate the agronomic, physiological, and phytochemical responses of P. peruviana to various pre- and post-emergence herbicides under greenhouse and field conditions. Two biotypes were used to assess selectivity and crop tolerance to thirteen post-emergence and two pre-emergence herbicides. Post-emergence trials revealed that chlorimuron, fomesafen, and the mixture atrazine + simazine significantly reduced plant height and caused high phytotoxicity, especially under field conditions. Conversely, quizalofop, clethodim, fluazifop, and clodinafop (ACCase inhibitors) showed excellent selectivity and maintained yield levels comparable to the control. Pre-emergence applications of S-metolachlor exhibited minimal effects on plant growth and effectively reduced weed density, while imazaquin caused a dose-dependent reduction in plant height and yield, particularly in one biotype. Phenolic compound analysis indicated that both herbicide application and weed presence influenced fruit quality. Plants grown under weed-free conditions presented the highest total phenolic content, while high weed pressure or herbicide injury reduced phenolic accumulation, especially in biotype 2. The results demonstrate that while some herbicides pose risks to P. peruviana development, others offer promising weed control options with minimal impact on crop performance and fruit quality. These findings contribute to the development of safe and effective weed management strategies for this emerging crop.
Citas
Besançon, T. E., Wasacz, M. H., & Carr, B. L. (2020). Weed control and crop tolerance with S-metolachlor in seeded summer squash and cucumber. Weed Technology, 34(6), 849-856. https://doi.org/10.1017/wet.2020.72
Chiconi, L. A., Bacha, A. L., Braga, A. F., Carrega, W. C., Nepomuceno, M. P., & Alves, P. L. d. C. A. (2022). Selectivity of herbicides isolated and/or with the addition of adjuvants for Physalis angulata crop. Horticultura Brasileira, 40. https://doi.org/10.1590/s0102-0536-20220202
Cobb, A. H., & Reade, J. P. H. (2011). Herbicides and Plant Physiology: Wiley.
Coleman, M. J., Kristiansen, P., Sindel, B. M., & Fyfe, C. (2024). Imperatives for integrated weed management in vegetable production: Evaluating research and adoption. Weed Biology and Management, 24(1), 3-14. https://doi.org/10.1111/wbm.12285
Dai, S. Z., Wang, Y. W., Yook, M. J., Wu, H. Z., Chen, M., & Zhang, C. J. (2025). Screening of Pre- and Post-Emergence Herbicides for Weed Control in Camelina sativa (L.) Crantz. Agronomy-Basel, 15(3). https://doi.org/10.3390/agronomy15030640
de Oliveira, C., Mathioni, S. M., Riaño, A. D., Camargo, E. R., Dornelles, S. H. B., Lemes, L. N., . . . Avila, L. A. (2025). First report of barnyardgrass resistant to glyphosate in Brazil. Advances in Weed Science, 43. https://doi.org/10.51694/AdvWeedSci/2025;43:00010
Dhaouadi, F., Sellaoui, L., Taamalli, S., Louis, F., El Bakali, A., Badawi, M., . . . Rtimi, S. (2022). Enhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: Adsorption properties and statistical physics modeling. Chemical Engineering Journal, 445. https://doi.org/10.1016/j.cej.2022.136773
Dittmar, P., Monks, D., Jennings, K., & Booker, F. (2012). Tolerance of Tomato to Herbicides Applied through Drip Irrigation. Weed Technology, 26, 684-690. https://doi.org/10.2307/23358271
Gazola, T., Gomes, D. M., Belapart, D., Dias, M. F., Carbonari, C. A., & Velini, E. D. (2021). Selectivity and residual weed control of pre-emergent herbicides in soybean crop. Revista Ceres, 68. https://doi.org/10.1590/0034-737X202168030008
Gnanasekaran, P. (2022). Effect of Post-Emergence Herbicides on Control of Weeds in Tomato During Kharif Season. International Journal of Farm Sciences, 12, 134-138. https://doi.org/10.5958/2250-0499.2022.00088.X
Grafiti. (2024). Sigmaplot. Palo Alto: Grafiti LLC.
Grammarly. (2025). Grammarly desktop. San Francisco. Retrieved from https://www.grammarly.com
Guiné, R. P. F., Gonçalves, F. J. A., Oliveira, S. F., & Correia, P. M. R. (2020). Evaluation of Phenolic Compounds, Antioxidant Activity and Bioaccessibility in Physalis peruviana L. International Journal of Fruit Science, 20(sup2), S470-S490. https://doi.org/10.1080/15538362.2020.1741056
Jin, Y. (2025). Validation of assay for measuring acetyl-coenzyme a carboxylase activity in grasses using malachite green. Analytical Biochemistry, 697. https://doi.org/10.1016/j.ab.2024.115723
Jones, E. A. L., Contreras, D. J., Argueta, R. J., Bradshaw, C., Leon, R. G., & Everman, W. J. (2024). Control of ALS- and PPO-inhibiting herbicide-resistant redroot pigweed (Amaranthus retroflexus) populations with common postemergence herbicides. Advances in Weed Science, 42. https://doi.org/10.51694/AdvWeedSci/2024;42:00039
Kashe, K., Ketumile, D., Kristiansen, P., Mahilo, C., & Moroke, T. (2020). Evaluation of pre-emergence herbicides for weed control in maize. Welwitschia International Journal of Agricultural Sciences, 2, 5-18. https://doi.org/10.32642/wijas.v2i.1437
Khodadadi, V., Yousefi, A. R., Shahbazi, S., Heydari, M., Kanatas, P., Tataridas, A., & Travlos, I. (2023). Evaluation of herbicides for selective weed control in cutleaf groundcherry (Physalis angulata L.). Crop Protection, 169. https://doi.org/10.1016/j.cropro.2023.106243
Kudsk, P., & Streibig, J. C. (2003). Herbicides – a two-edged sword. Weed Research, 43(2), 90-102. /https://doi.org/10.1046/j.1365-3180.2003.00328.x
Kukorelli, G., Reisinger, P. W. M., & Pinke, G. (2013). ACCase inhibitor herbicides – selectivity, weed resistance and fitness cost: a review. International Journal of Pest Management, 59, 165 - 173. https://doi.org/10.1080/09670874.2013.821212
McNaughton, K. E. (2013). Cumulative herbicide stress on processing tomato (Solanum lycopersicum L.). University of Guelph,
Muniz, J., Molina, A. R., & Muniz, J. (2015). Physalis: Panorama produtivo e econômico no Brasil. Horticultura Brasileira, 33. https://doi.org/10.1590/S0102-053620150000200023
Nosratti, I., Sabeti, P., Chaghamirzaee, G., & Heidari, H. (2020). Weed problems, challenges, and opportunities in Iran. Crop Protection, 134. https://doi.org/10.1016/j.cropro.2017.10.007
OpenAI. (2025). ChatGPT. San Francisco: OpenAi. Retrieved from https://chat.openai.com/
Pérez, M., Dominguez-López, I., & Lamuela-Raventós, R. M. (2023). The Chemistry Behind the Folin-Ciocalteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. J Agric Food Chem, 71(46), 17543-17553. https://doi.org/10.1021/acs.jafc.3c04022
R Development Core Team. (2025). A language and environment for statistical computing. Viena: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org
Raja, T., Devarajan, Y., Jayasankar, P., Singh, D., Subbiah, G., & Logesh, K. (2024). Characterization and sustainable applications of galinsoga parviflora natural fibers: A pathway to eco-friendly material development. Results in Engineering, 24. https://doi.org/10.1016/j.rineng.2024.103601
Rosenthal, M. D. A., Procópio, S. O., Pinto, J. J. O., Júnior, E. A. J., Peres, W. B., Manica, R., . . . Franzini, W. (2006). S-metholachlor toxicity in maize plants originated from seeds with different sizes and shapes. 24(2), 319-327. https://doi.org/10.1590/s0100-83582006000200015
Santana, A. S., Giacobbo, C. L., Prado, J. d., Uberti, A., Louis, B., & Alberto, C. M. (2020). Fenologia e qualidade de frutos de acessos de Physalis spp. Agrarian, 13(47), 1-8. https://doi.org/10.30612/agrarian.v13i47.8687
Santos, H. G. d., Jacomine, P. K. T., Anjos, L. H. C. d., Oliveira, V. A. d., Lumbreras, J. F., Coelho, M. R., . . . Cunha, T. J. F. (2018). Sistema Brasileiro de Classificação de Solos (5 ed.). Brasiília: Embrapa.
Uljol, L. H. O., Bianco, S., Filho, A. B. C., Bianco, M. S., & Carvalho, L. B. (2018). Weed Interference on Productivity of Bell Pepper Crops. Planta Daninha, 36. https://doi.org/10.1590/S0100-83582018360100046
Velasquez, J. C., Hoyos, V., Roma-Burgos, N., & Plaza, G. (2024). Weedy rice resistance to imidazolinone herbicides and control with glyphosate. Advances in Weed Science, 42. https://doi.org/10.51694/AdvWeedSci/2024;42:00035
Yari, P., Alirezalu, A., & Khalili, S. (2025). A comparative study of chemical composition, phenolic compound profile and antioxidant activity of wild grown, field and greenhouse cultivated Physalis (P. alkekengi and P. peruviana). Food Production, Processing and Nutrition, 7(1), 19. https://doi.org/10.1186/s43014-024-00287-9
Yu, Q., & Powles, S. B. (2014). Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production. Plant Physiology, 166(3), 1106-1118. https://doi.org/10.1104/pp.114.242750

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Scientia Agropecuaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).