Actividad antifúngica de extractos vegetales contra Botrytis cinerea, Lasiodiplodia theobromae y Fusarium sp.: Eficacia en el control de Erysiphe necator y efecto fitotóxico en semillas de trigo
DOI:
https://doi.org/10.17268/sci.agropecu.2025.040Palabras clave:
metabolitos secundarios, fitoquímicos, actividad antifúngica, control natural, fitotoxicidad, alelopáticaResumen
El sector agrícola enfrenta riesgos por los daños causados por fitopatógenos, y muchos agricultores dependen de fungicidas sintéticos para combatirlos. Sin embargo, el uso excesivo de estos productos contamina el ambiente y favorece la resistencia de los patógenos. Este estudio evaluó la inhibición del crecimiento micelial de 57 extractos vegetales sobre Botrytis cinerea, Lasiodiplodia theobromae y Fusarium sp., y su eficacia en el control de Erysiphe necator en campo, además de su efecto fitotóxico en semillas de trigo y la identificación de metabolitos presentes en los extractos. Los extractos más efectivos fueron los de Ambrosia artemisiifolia, Conyza sumatrensis, Dysphania ambrosioides, Minthostachis mollis, Salvia sp., Pimpinella anisum y Syzygium aromaticum. El extracto de P. anisum presentó la mayor inhibición del crecimiento de B. cinerea en tomates, mientras que para el control de E. necator, los extractos más eficaces fueron P. anisum, C. sumatrensis y S. aromaticum. Además, el extracto de A. artemisiifolia mostró efectos fitotóxicos en el crecimiento de semillas de trigo. Se identificaron flavonoides, taninos, esteroides, triterpenoides, alcaloides, leucoantocianidinas, cumarinas y saponinas como los principales metabolitos en los extractos. Estos resultados ofrecen alternativas viables para el control de hongos fitopatógenos mediante el uso de extractos vegetales, contribuyendo a una agricultura más sostenible y menos dependiente de productos químicos.
Citas
Achimón, F., Brito, V., Pizzolitto, R. P., Ramirez, A., Gómez, E. A. & Zygadlo, J. (2021). Chemical composition and antifungal properties of commercial essential oils against the maize phytopathogenic fungus Fusarium verticillioides, Argentine Journal of Microbiology, 53(4), 292-303. https://doi.org/10.1016/j.ram.2020.12.001
Anastasopoulou, E., Graikou, K., Ganos, C., Calapai, G. & Chinou, I. (2020). Pimpinella anisum seeds essential oil from Lesvos island: effect of hydrodistillation time, comparison of its aromatic profile with other samples of the Greek market. Safe use. Food and Chemical Toxicology, 135, 110875. https://doi.org/10.1016/j.fct.2019.110875
Alkilayh, O. A., Hamed, K. E., Sayyed, R. Z., Abdelaal, K., & Ayman F. O. (2024). Characterization of Botrytis cinerea, the causal agent of tomato grey mould, and its biocontrol using Bacillus subtilis, physiological and molecular. Plant Pathology, 133, 102376. https://doi.org/10.1016/j.pmpp.2024.102376
Arce-Araya, C., Varela-Benavides, I., & Torres-Portuguez, S. (2019). Inhibition of mycelial growth of fungi associated with anthrac-nose in yam (Dioscorea alata). Agronomía Mesoamericana, 30(2), 381-393. http://dx.doi.org/10.15517/am.v30i2.32653
Areco, V. A., Achimón, F., Almirón, C., Nally, M. C., Zunino, M. P., & Yaryura, P. (2024). Antifungal activity of essential oils rich in ketones against Botrytis cinerea: New strategy for biocontrol. Biocatalysis and Agricultural Biotechnology, 59, 103233. https://doi.org/10.1016/j.bcab.2024.103233.
Azeem, M., Zaman, T., Mehmood, A., Muhammad, A., Mozūratis, R., Alwahibi, M., & Mohamed, M. (2022). Pesticidal potential of some wild plant essential oils against grain pests Tribolium castaneum (Herbst, 1797) and Aspergillus flavus (Link, 1809). Arabian Journal of Chemistry, 15(1), 103482. https://doi.org/10.1016/j.arabjc.2021.103482
Behshti, M., Jahani, M., Aminifard, M. & Hoseeini, S. (2020). Essential oils to control Botrytis cinerea in vitro and in vivo on grape fruits. Journal of Horticulture and Postharvest Research, 3(2), 161-172. https://doi.org/10.22077/jhpr.2019.2644.1079
Bonea, D., Bonciu, E. Niculescu, M. & Olaru, A. (2017). The allelopathic, cytotoxic and genotoxic effect of Ambrosia artemisiifolia on the germination and root meristems of Zea mays. International Journal of Cytology, Cytosystematics and Cytogenetics, 71(1), 24-28. https://doi.org/10.1080/00087114.2017.1400263
Burbano-David, D., Lagos-Mora, L. E., Álvarez-Ordoñez, S., & Chañag-Miramag, H. A. (2021). Sensitivity of Phytophthora infestans to aqueous extracts of Lippia origanoides and Origanum vulgare. Agronomía Mesoamericana, 32(1), 149-162. http://dx.doi.org/10.15517/am.v32i1.40573
Champagne, A., & Boutry, M. (2016). Proteomics of terpenoid biosynthesis and secretion in trichomes of higher plant species. Biochim Biophys Acta, 1864(8), 1039-1049. https://doi.org/10.1016/j.bbapap.2016.02.010
Chui-Hua, K., Peng, W., Xiao-Hua, X. (2007). Allelopathic interference of Ambrosia trifida with wheat (Triticum aestivum). Agriculture, Ecosystems & Environment, 119, 416-420, https://doi.org/10.1016/j.agee.2006.07.014
Cadenilla, L., Hernández, C., Mathieu, C., Bailly, J. D. & Durrieu, V. (2023). Screening of the anti-aflatoxin B1 activity of Peruvian plant extracts: relation with their composition. Food and Bioprocess Technology, 16, 1324-1334. https://doi.org/10.1007/s11947-023-03002-7
Cohen, Y., Wang, W., Ben-Daniel, B. H., & Ben-Daniel, Y. (2006). Extracts of Inula viscosa control downy mildew of grapes caused by Plasmopara viticola. Phytopathology, 96(4), 417–424. https://doi.org/10.1094/phyto-96-0417
Csubák, M., & Tóth, C. (2014) Ragwed (Ambrosia artemisifolia) as a biologically active herb. In. Proceedings of the International Conference “Agri-Food Sciences, Processes and Technologies” Conference Section, 1-6: Agriculture and Environmental Protection. Rumania. 187 p.
Corroto, F., Gamarra, O. A., & Macía, M. J. (2019). Different patterns in medicinal plant use along an elevational gradient in northern Peruvian Andes. Journal of Ethnopharmacology, 239, 111924. https://10.1016/j.jep.2019.111924
Da Silva, D., Nakamoto, M. M., Braga, A. R. C., & Da Silva, E. M. C. (2022). Food coating using vegetable sources: importance and industrial potential, gaps of knowledge, current application, and future trends. Applied Food Research, 2(1), 100073. https://doi.org/10.1016/j.afres.2022.100073
Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, D. N. (2021). Nanostructured Pimpinella anisum essential oil as novel green food preservative against fungal infestation, aflatoxin B1 contamination and deterioration of nutritional qualities. Food Chemistry, 344(15). 128574. https://doi.org/10.1016/j.foodchem.2020.128574
El Baz, S., Soulaimani, B., Abbad, I., Azgaou, Z., Lotfi, E. M., Malha, M., & Mezrioui, N. (2025). Antimicrobial activity and the synergy potential of Cinnamomum aromaticum Nees and Syzygium aromaticum (L.) Merr. et Perry essential oils with antimicrobial drugs. Microbiology Research, 16(3), 63. https://doi.org/10.3390/microbiolres16030063
Farhan, M., Pan, J., Hussain, H., Zhao, J., Yang, H., Ahmad, I., & Zhang, S. (2024). Aphid-resistant plant secondary metabolites: Types, insecticidal mechanisms, and prospects for utilization. Plants, 13(16), 2332. https://doi.org/10.3390/plants13162332
Ferdes, M., Al Juhaimi, F., Ozcan, M. M., & Ghafoor, K. (2017). Inhibitory effect of some plant essential oils on growth of Aspergillus niger, Aspergillus oryzae, Mucor pusillus and Fusarium oxysporum. South african Journal of Botany, 113, 457-460 https://doi.org/10.1016/j.sajb.2017.09.020
Ferreira, S. H., Ferreira-Silva, M. A., Souza, R., Cruz, A. M. & Peruch, L. G. (2022). Antifungal film incorporated with Chenopodium ambrosioides L. essential oil for postharvest storage. ACS Food Science & Technology, 2(7), 1086-1095. https://doi.org/10.1021/acsfoodscitech.2c00039
Figueroa-Merma, A., Chirinos, R., García-Rios, D., Pedreschi, R., Aguilar-Galvez, A. & Campos, D. (2023). Bioactive compounds characterisation of Peruvian Dysphania ambrosioides (L.) Mosyakin & Clemants leaves by GC/MS and UPLC–ESI–Q/TOF–MSn techniques. International Journal of Food Science & Technology, 58(3), 1219-1229. https://doi.org/10.1111/ijfs.16270
Ghlissi, Z., Kallel, R., Krichen, F., Hakim, A., Zeghal, K., Boudawara, T., Bougatef, A., & Sahnoun, Z. (2020). Polysaccharide from Pimpinella anisum seeds: structural characterization, anti-inflammatory and laser burn wound healing in mice. International Journal of Biological Macromolecules, 156, 1530-1538. https://doi.org/10.1016/j.ijbiomac.2019.11.201
Godfray, H. C. J., Mason-D’Croz, D., & Robinson, S. (2016). Food system consequences of a fungal disease epidemic in a major crop. Philosophical Transactions of the Royal Society B, 371, 20150467. https://doi.org/10.1098/rstb.2015.0467
Godard, S., Slacanin, I., Viret, O., & Gindro, K. (2009). Induction of defense mechanisms in grapevine leaves by emodin and anthraquinone rich plant extracts and their conferred resistance to downy mildew. Plant Physiology and Biochemistry, 47(9). 827-837. https://doi.org/10.1016/j.plaphy.2009.04.003
Harm, A., Kassemeyer, H., Seibicke, T., & Regner, F. (2011). Evaluation of chemical and natural resistance inducers against downy mildew (Plasmopara viticola) in grapevine. American Journal of Enology and Viticulture, 62, 184-192. https://doi:10.5344/ajev.2011.09054
Han, C., Shao, H., Shixing, Z., Mei, Y., Zhenrui, C., Huang, L., & Nivel, G. (2021). Chemical composition and phytotoxicity of essential oil from invasive plant, Ambrosia artemisiifolia L. Ecotoxicology and Environmental Safety, 211(15) 111879. https://doi.org/10.1016/j.ecoenv.2020.111879
Hammoudi, A., Zatla, A.T., Dib, & El Amine Dib, M. (2023). A phytochemical and antioxidant study of the hexanoic extract of Rhaponticum acaule. Chemistry Proceedings, 14(1). https://doi.org/10.3390/ecsoc-27-16141
Hoi, T. M., Huong, L. T., Chinh, H. V., Hau, D. V., Satyal, P., Tai, T. A., Dai, D. N., Hung, N. H., Hien, V. T., & Setzer, W. N. (2020). Essential oil compositions of three invasive Conyza species collected in Vietnam and their larvicidal activities against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Molecules, 25(19), 4576. https://doi.org/10.3390/molecules25194576
Jack, I. R., Okorosaye-Orubite, K. (2008). Phytochemical analysis and antimicrobial activity of the extract of leaves of fleabane (Conyza sumatrensis). Journal of Environmental Science and Management, 12(4), 63-65.
Jiang, C. J., Sun, Y, Xu, S., Liu, X. & Xie, X. (2025) From waste to weapon: the potential of medicinal plant waste extracts for eco-friendly crop disease management. Frontiers in Sustainable Food Systems. Sec. Waste Management in Agroecosys-tems, 9, 1556604. https://doi.org/10.3389/fsufs.2025.1556604
Kovács, B., Hohmann, J., Csupor-Löffler, B., Kiss, T., & Csupor, D. (2022). A comprehensive phytochemical and pharmacological review on sesquiterpenes from the genus Ambrosia. Heliyon, 8(7) e09884. https://doi.org/10.1016/j.heliyon.2022.e09884.
Kovács, B., Püski, P., Bajtel, Á., Ferencz, E., Csupor-Löffler, B., Csupor, D., & Kiss, T. (2024). Targeted screening and quantification of characteristic sesquiterpene lactones in Ambrosia artemisiifolia L. at different growth stages. Plants, 13(15), 2053. https://doi.org/10.3390/plants13152053
Kovács, B., Szemerédi, N., Csikós, O., Kiss, T., Veres, K., Spengler, G. & Csupor, D. (2024). Chemical composition, antimicrobial and antiproliferative activity of the essential oil from Ambrosia artemisiifolia L. Journal of Essential Oil Research, 36(1), 30–42. https://doi.org/10.1080/10412905.2024.2303449
Lemjallad, L., Chabir, R., Kandri, Y., El Ghadraoui, L., Ouazzani, F. & Errachidi, F. (2019). Improvement of heliciculture by three medicinal plants belonging to the Lamiaceae family. The Scientific World Journal, Article ID 2630537, 1-7. https://doi.org/10.1155/2019/2630537
Liao, J., Deng., Y., Deng, Z., Meng, S., Wei, J., Huang, L, Xu, Z.& Luo, H. (2022). Studies on the Antimicrobial Activity of Extracts from 23 Plants including Clausena lansium. Journal of Henan Agricultural Sciences, 51(5), 84-95. https://doi.org/10.15933/j.cnki.1004-3268.2022.05.009
Lira De Souza, E. A., Medeiros, A., Rodrigues, F., Dantas, A. C., Chaves, C. M. H., & Queiroga, D. (2014). Irradiação a Laser de baixa intensidade sobre cepas de Candida in vitro. Revista Cubana de Estomatología, 51(4), 358-365.
Liu, Z., Zhang, N., Ma, X., Zhang, T., Li, X., Tian, G., Yulong, F. & An, P. (2022). Sesquiterpenes from Ambrosia artemisiifolia and their allelopathy. Frontiers in Plant Science, 13, 996498. https://doi.org/10.3389/fpls.2022.996498
Ma, Y. N., M., Xu, F. R., Chen, Ch.J., Li, Q. Q., Wang, M. Z., Cheng, Y. X. & Dong, X. (2019). The beneficial use of essential oils from buds and fruit of Syzygium aromaticum to combat pathogenic fungi of Panax notoginseng. Industrial Crops and Products, 133, 185-192. https://doi.org/10.1016/j.indcrop.2019.03.029.
Mabrouk, S., Salah, K. B., Elaissi, A., Jlaiel, L., Jannet, H. B., Aouni, M., Harzallah-Skhiri, F. (2013). Chemical composition and antimicrobial and allelopathic activity of Tunisian conyza sumatrensis (Retz.) E.WALKER essential oils. Chemical Biodiversity, 10(2), 209-223. https://doi.org/10.1002/cbdv.201200117
Magri, A., Curci, M., Battaglia, V., Fiorentino, A., & Petriccione, M. (2023). Essential oils in postharvest treatment against microbial spoilage of the rosaceae family fruits. Applied Chemical, 3(2), 196-216. https://doi.org/10.3390/appliedchem3020013
Mohamedfarook, E., Thirumurugan, A., Suresh, K., Paramasivam, M., Merina, S. K. P., Prabakaran, M. (2024). Efficacy of botanical repellents on major pests - A review. Plant Science Today, 11(4) 1-10. https://doi.org/10.14719/pst.5476
Mosyakin, S. L., & Clemants, S. E. (2002). New nomenclatural combinations in Dysphania R. Br. (Chenopodiaceae): taxa occurring in North America. Ukrainian Botanical Journal, 59(4), 380–385.
Muhammad, A., Tehmina, A., Ahmad, A., Ahmad, H., Waheed, A. (2024). Inhibitory potential of Syzygium aromaticum against Fusarium oxysporum f. sp. lycopersici: In-vitro analysis and molecular docking studies. South African Journal of Botany, 169, 178-185. https://doi.org/10.1016/j.sajb.2024.04.028.
Oxenham, S. K., Svoboda, K. P., & Walters, D. R. (2005). Altered growth and polyamine catabolism following exposure of the chocolate spot pathogen Botrytis fabae to the essential oil of Ocimum basillcum. Mycologia, 97, 576–579. https://doi.org/10.2307/3762338
Padilla-Gonzalez, G.F., Dos Santos, F.A., & Da Costa, F. B. (2016). Sesquiterpene lactones: more than protective plant com-pounds with high toxicity. Critical Reviews in Plant Sciences, 35, 18-37. https://doi.org/10.1080/07352689.2016.1145956
Plascencia-Jatomea, M., Viniegra, G., Olayo, R., Castillo-Ortega, M. M., & Shirai, K. (2003). Effect of chitosan and temperature on spore germination of Aspergillus niger. Macromolecular Bioscience, 3(10), 582–586. http://dx.doi.org/10.1002/mabi.200350024
Quinty, V., Nasreddine, R., Colas, C., Launay, A., Nehmé, R., El-Khiraoui, A., Piot, C., Draye, M., Destandau, E., Da Silva, D., Chatel, G. (2023). Antioxidant and anti-lipase capacities from the extracts obtained from two invasive plants: Ambrosia artemisiifolia and Solidago canadensis. Food Bioscience, 55, 103069. https://doi.org/10.1016/j.fbio.2023.103069.
Ramírez-Benítez, J. E., Arjona, R. A., Caamal, J. H., Rodríguez, N. L., Solís, S. E., & Lizama, U. C. (2019). Growth inhibition and genetic modification of Phytophthora capsici using chitosan with low degree of polymerization. Argentine Journal of Microbiology, 51(1), 12-17. http://dx.doi.org/10.1016/j.ram.2018.03.003
Rastgou, M., Rezaee, Y., Ercisli, S., Sayyed, R. Z., Enshasy, H. A., Dailin, D. J., Alfarraj, S., & Ansari, M. J. (2022). The effect of some wild grown plant extracts and essential oils on Pectobacterium betavasculorum: The causative agent of bacterial soft rot and vascular wilt of sugar beet. Plants, 11(9), 1155. https://doi:10.3390/plantas11091155
Reynel, C. (2012). Guía de identificación de las plantas comunes del derecho de vía del ducto de Perú LNG. Comunica 2 SAC. https://perulng.com/wp-content/uploads/2024/02/Guia_identificacion_plantas.pdf
Ribeiro, R. M., De Carvalho, M. B. B., De Brito J.E. R., De Lima, B., Da S. F., Andrade, L. P., Souza, G. A. B. C., Moura, J. C., & Penha, E. C. (2023). Phytochemical compounds from Dysphania ambrosoides leaves: Review of bioactive constituentes present in the phytocomplex. Revista Contemporânea, 3(07), 9612–9635. https://doi.org/10.56083/RCV3N7-117
Rienth, M., Crovadore, J., Ghaffari, S., & Lefort, F. (2019). Oregano essential oil vapour prevents Plasmopara viticola infection in grapevine (Vitis vinifera) and primes plant immunity mechanisms. PLoS ONE, 14(9), e0222854. https://doi.org/10.1371/journal.pone.0222854
Rodríguez, E. M., López, I. G., Bautista, F. E., Flores, H. Gonzáles, I., Cervantes, V. S., Espino, H., & Alpuche-Solís, A. G. (2024). Evaluation of in vitro and greenhouse antibacterial activity of Salvia amarissima extracts against Clavibacter michiganensis subsp. michiganensis. Revista Bio Ciencias, 11, e1615. https://doi.org/10.15741/revbio.11.e1615
Rojas-Armas, J. P., Arroyo-Acevedo, J. L., Ortiz-Sánchez, J. M., Palomino-Pacheco, M., Hilario-Vargas, H. J., Herrera-Calderón, O., & Hilario-Rojas, J. (2019). Potential Toxicity of the Essential Oil from Minthostachys mollis: A medicinal plant commonly used in the traditional Andean medicine in Peru. Journal of Toxicology, 2019, 1987935. https://doi.org/10.1155/2019/1987935
Rojas-Molina, J. O., Pino, J. A., Cevallos-Carvajal, E. R., Zambrano-Ochoa, Z. E., Vaca-Castro, C. E., Molina-Borja, F. A., & Mena-Herrera, K. R. (2024). Aceite esencial de hojas de Minthostachys mollis[HBK] Griseb. del Ecuador: Extracción, composición química, capacidad antioxidante y actividad antimicrobiana. Latin American and Caribbean Bulletin of Medicinal and Aromatic Plants, 23(3), 437-447(2024). https://doi.org/10.37360/blacpma.24.23.3.30
Romero, A., Faye, A., Betancur-Corredor, B. Baumüller, H. & Braun, J. V. (2025). Productivity effects of agroecological practices in Africa: insights from a systematic review and meta-analysis. Food Security, 17, 207–229. https://doi.org/10.1007/s12571-024-01504-6
Santiago, J. A., Cardoso, M., Das, G., Batista, L. R., Castro, E. M. De, M. L. & Pires, M. F. (2016). Essential oil from Chenopodium ambrosioides L.: secretory structures, antibacterial and antioxidant activities. Acta Scientiarum. Biological Sciences, 38(2), 139-147. https://doi.org/10.4025/actascibiolsci.v38i2.28303
Sarić-Krsmanović, M., Umiljendic, J. G., Radivojevic, L., Rajkvic, M., Santric, L., & Durovic-Pejcev, R. (2019). Chemical Composition of Ambrosia trifida essential oil and phytotoxic effect on other plants. Chemistry & Biodiversity, 17(1), e1900508. https://doi.org/10.1002/cbdv.201900508.
Schenee, S., Queiroz, E., Voinesco, F., Marcourt, L., Dubuis, P., Wolfender, J. & Gindro, K. (2013). Vitis vinifera canes, a new source of antifungal compounds against Plasmopara viticola, Erysiphe necator, and Botrytis cinerea. Journal of Agricultural and Food chemistry, 61(23). https://pubs.acs.org/doi/abs/10.1021/jf4010252
Sempere-Ferre, F., Asamar, J., Castell, V., Roselló, J., & Santamarina, M. P. (2021). Evaluating the antifungal potential of botanical compounds to control Botryotinia fuckeliana and Rhizoctonia solani. Molecules, 26(9), 2472. https://doi.org/10.3390/molecules26092472
Seni, A., Pal, R., Mohapatra, S., Mandal, D., Bansude, S. K., Seth, P., Barla, S., & Sahu, J. (2025). Pesticidal plant extract effect against major lepidopteran insect pests and their natural enemies in rice Oryza sativa L. Frontiers in Insect Science, 4, 1500542. https://doi.org/10.3389/finsc.2024.1500542
Shanaida, M. & Golembiovska, O. (2018). Identification and component analysis of triterpenoids in Monarda fistulosa L. and Ocimum americanum L. (Lamiaceae) aerial parts. Pharmaceutical Science, 13, 26-31. https://doi.org/10.15587/2519-4852.2018.135767
Silva-Beltrán, N. P., Boon, S. A., Ijaz, M. K., McKinney, J. & Charles, P. G. (2023). Antifungal activity and mechanism of action of natural produt derivates as potential environmental disinfectants. Journal of Industrial Microbiology and Biotechnology, 50(1), 36. https://doi.org/10.1093/jimb/kuad036
Solís-Quispe, L., Tomaylla-Cruz, C., Callo-Choquelvica, Y., Solís-Quispe, A., Rodeiro, I., & Hernández, I. (2015). Chemical composition, antioxidant and antiproliferative activities of essential oil from Schinus areira L. and Minthostachys spicata (Benth.) Epl. Grown in Cuzco, Peru. Journal of Essential Oil Research, 28(3), 234-240. https://doi.org/10.1080/10412905.2015.1120691
Spinozzi, E., Zeni, V., Di Giovanni, F., Marmugi, M., Baldassarri, C., Mazzara, E., Ferrati, M., Ricciardi, R., Canale, A., Lucchi, A., Petrelli, R., Maggi, F., & Benelli, G. (2023). Aniseed, Pimpinella anisum, as a source of new agrochemicals: Phytochemistry and insights on insecticide and acaricide development. Agriculture Communications, 1(1), 10003 https://doi.org/10.1016/j.agrcom.2023.100003
Sik, B., Kapcsándi, V., Székelyhidi, R., Hanczné, E. L., & Ajtony, Z. (2019). Recent advances in the analysis of rosmarinic acid from herbs in the Lamiaceae Family. Natural Product Communications, 2019, 1-10. https://doi.org/10.1177/1934578X19864
Subin, K., Shambhu, K., Jose, P.A., Jose, M. J., Mufeeda, K. T., Bibishna, A. V., & Mahadevakumar, S. (2024). Pathological investigation and morphomolecular characterisation of Lasiodiplodia theobromae causing fruit rot diseases on Hydnocarpus longipedunculatus – A novel host record from India. Physiological and Molecular Plant Pathology, 132, 102316, https://doi.org/10.1016/j.pmpp.2024.102316.
Taillis, D., Pébarthé-Courrouilh, A., Lepeltier, É., Petit, E., Palos-Pinto, A., Gabaston, J., & Cluzet, S. (2022). A grapevine by-product extract enriched in oligomerised stilbenes to control downy mildews: focus on its modes of action towards Plasmopara viticola. OENO One, 56(3), 55–68. https://doi.org/10.20870/oeno-one.2022.56.3.4911
Torres-Aguirre, G. A., Muñoz-Bernal, Ó. A., Álvarez-Parrilla, E., Núñez-Gastélum, J. A., Wall-Medrano, A., Sáyago-Ayerdi, S. G., & Rosa, L. A. (2018). Optimización de la extracción e identificación de compuestos polifenólicos en anís (Pimpinella anisum), clavo (Syzygium aromaticum) y cilantro (Coriandrum sativum) mediante HPLC acoplado a espectrometría de masas. TIP. Revista especializada en ciencias químico-biológicas, 21(2), e201824. https://doi.org/10.22201/fesz.23958723e.2018.2.4
Tóth, C. T., Miskolczi, P. M., & Csubák, M. (2012). Effect of ragwort extract in vitro test against Monilinia laxa. Agricultural Science Publications, 47. ISBN: 978-9972-9733-7-6.
Vidotto, F., Tesio, F. & Ferrero, A. (2013). Allelopathic effects of Ambrosia artemisiifolia L. in the invasive process, Crop Protection, 54, 161-167, https://doi.org/10.1016/j.cropro.2013.08.009.
Vigneshwaran, K., Rajamohan, K., Balabaskar, P., Udhayakumar, R., Sivasakthivelan, P. (2025). Molecular, morphological identification, and virulence profiling of Fusarium oxysporum f. sp. lycopersici (Sacc.) (W.C. Snyder & H.N. Hansen) associated with Root-Knot Nematode inciting Fusarium wilt of tomato. Physiological and Molecular Plant Pathology, 138, 102741 https://doi.org/10.1016/j.pmpp.2025.102741.
Vuerich, M., Petrussa, E., Filippi, A., Cluzet, E., Fonayet, J. V., Sepulcro, A., Piani, B., Ermacora, P., & Braidot, E. (2023). Antifungal activity of chili pepper extract with potential for the control of some major pathogens in grapevine. Pest Management Science, 79(7), 2503-2516. https://doi.org/10.1002/ps.7435.
Yana, К., Levaya, G. Atazhanova, A., Kacergius, T., Ivasenko, S. A., Marchenko, A. B. Ishmuratova, M. Y. & Smagulov, M. R. (2024). Salvia dumetorum essential oil: GC-MS analysis, antibacterial activity and effect on the formation of Streptococcus mutans biofilms. Natural Product Research, 38(20). https://doi.org/10.1080/14786419.2023.2256019.
Yerena-Prieto, B. J., Gonzalez-Gonzalez, M., Vázquez-Espinosa, M., González-de-Peredo, A. V., García-Alvarado, M. Á., Palma, M., Rodríguez-Jimenes, G. d. C., Barbero, G. F. (2022). Optimization of an ultrasound-assisted extraction method applied to the extraction of flavonoids from moringa leaves (Moringa oleifera Lam.). Agronomy, 12(2), 261. https://doi.org/10.3390/agronomy12020261
Zeng, Z., Huang, H., He, H., Qiu, L., Gao, Q., Li, Y., Ding, W. (2022). Sesquiterpenoids from the inflorescence of Ambrosia artemisiifolia. Molecules, 2022, 27, 5915. https://doi.org/10.3390/molecules27185915
Zhao, Y., Wang, Q., Wu, X., Jiang, M., Jin, H., Tao, K., Hou, T. (2021). Unraveling the polypharmacology of a natural antifungal produt, eugenol, against Rhizoctonia solani. Pest Management Science, 77(7), 3469-3483. https://doi.org/10.1002/ps.6400
Zinicovscaia, I., Gundorina, S., Vergel, K., Grozdov, D., Ciocarlan, A., Aricu, A., Dragalin, I. & Ciocarlan, N. (2020). Elemental analysis of Lamiaceae medicinal and aromatic plants growing in the Republic of Maldova using neutron activation analysis. Phytochemistry Letters, 35, 119-127. https://doi.org/10.1016/j.phytol.2019.10.009

Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Scientia Agropecuaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).