Annona deceptrix as a potential biofactory for secondary metabolites using plant cell and tissue cultures

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2025.034

Palabras clave:

Annonaceae, bioactive compounds, callus cultures, cell suspension cultures, biofactory

Resumen

Plant biotechnology is a powerful tool that has enabled the transformation of plant cells into small-scale biofactories to produce secondary metabolites. These compounds can be synthesized in laboratory settings on a large scale, independent of spatial, resource, or environmental constraints. Identifying plant species with promising phytochemical profiles is crucial to obtaining bioactive products with high market demand and commercial value. The purpose of the present review is to highlight the potential of Annona deceptrix as a biotechnological resource, based on findings from previous studies conducted on other Annona species. Despite belonging to a botanical family with a well-established track record in the production of characteristic and biologically active secondary metabolites—particularly those with agrochemical relevance—A. deceptrix remains underutilized and understudied. Exploring its biotechnological potential is essential, as establishing this species in vitro would allow the development of callus production protocols, characterization of its cell growth kinetics, and the subsequent extraction of high-quality bioactive compounds. These extracts could serve as innovative solutions to challenges across various industries, ultimately leading to the development of marketable final products.

Citas

Ahmad, A., Wang, J. Da, Pan, Y. B., Sharif, R., & Gao, S. J. (2018). Development and use of simple sequence repeats (SSRs) markers for sugarcane breeding and genetic studies. Agronomy, 8(11). https://doi.org/10.3390/agronomy8110260

Anaya-Esparza, L. M., García-Magaña, M. de L., Abraham Domínguez-Ávila, J., Yahia, E. M., Salazar-López, N. J., González-Aguilar, G. A., & Montalvo-González, E. (2020). Annonas: Underutilized species as a potential source of bioactive compounds. Food Research International, 138. https://doi.org/10.1016/j.foodres.2020.109775

Ansante, T. F., Ribeiro, L. do P., Bicalho, K. U., Fernandes, J. B., da Silva, M. F. das G. F., Vieira, P. C., & Vendramim, J. D. (2015). Secondary metabolites from Neotropical Annonaceae : Screening, bioguided fractionation, and toxicity to Spodoptera frugiperda (J. E. Smith) (Lepidoptera : Noctuidae). Industrial Crops and Products, 74, 969–976. https://doi.org/10.1016/j.indcrop.2015.05.058

Anuradha, M., Balasubramanya, S., Subbalakshmi, G., & Shilpa, P. (2025). Commercialization of In Vitro Secondary Metabolite Production: Challenges and Opportunities. In In Vitro Production of Plant Secondary Metabolites (pp. 321–346). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-8808-8_25

Ayilara, M. S., Adeleke, B. S., Akinola, S. A., Fayose, C. A., Adeyemi, U. T., Gbadegesin, L. A., Omole, R. K., Johnson, R. M., Uthman, Q. O., & Babalola, O. O. (2023). Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1040901

Barboza, T. J. S., Lage, D. A., Moss, V. B., Souza, C. A., & Albarello, N. (2014). Efeito de diferentes meios nutritivos e fitorreguladores visando à otimização da calogênese de Annona mucosa (Jacq.). Revista Brasileira de Plantas Medicinais, 16(4), 905–911. https://doi.org/10.1590/1983-084X/12_117

Bhatia, S. (2015). Plant Tissue Culture. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences (pp. 31–107). Elsevier. https://doi.org/10.1016/B978-0-12-802221-4.00002-9

Bidabadi, S. S., & Mohan Jain, S. (2020). Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants, 9(6). https://doi.org/10.3390/plants9060702

Bonneau, N., Baloul, L., Bajin ba Ndob, I., Sénéjoux, F., & Champy, P. (2017). The fruit of Annona squamosa L. as a source of environmental neurotoxins: From quantification of squamocin to annotation of Annonaceous acetogenins by LC–MS/MS analysis. Food Chemistry, 226, 32–40. https://doi.org/10.1016/j.foodchem.2017.01.042

Casamina, C. J. E., & F. Reyes, D. (2022). Extracts of Senna sophera (L.) Roxb., Syzygium cumuni, and Annona squamosa Linn. as Biopesticides against Army Worm (Spodoptera exigua) Larvae. Oriental Journal of Chemistry, 38(2), 427–431. https://doi.org/10.13005/ojc/380226

Cavers, S., & Dick, C. W. (2013). Phylogeography of Neotropical trees. Journal of Biogeography, 40(4), 615–617. https://doi.org/10.1111/jbi.12097

Colom, O. A., Barrachina, I., Mingol, I. A., Mas, M. C. G., Sanz, P. M., Neske, A., & Bardon, A. (2008). Toxic effects of Annonaceous acetogenins on Oncopeltus fasciatus. Journal of Pest Science, 81(2), 85–89. https://doi.org/10.1007/s10340-007-0189-2

Corrêa de Souza, L. A., Parreiras Costa, G., Fracasso, J. A. R., da Costa, L. T. S., Barbosa, D. B., Zoppé, N. A., Marques Ribeiro, J., Ximenes, V. F., Ribeiro-Paes, J. T., & dos Santos, L. (2025). Phytochemical profile, cytotoxicity, anti-inflammatory, antioxidant, and antiglycation activity of Annona crassiflora extract: an in vitro study. Cosmetics, 12(2), 36. https://doi.org/10.3390/cosmetics12020036

Costa, M. D. S., De Paula, S. O., Martins, G. F., Zanuncio, J. C., Santana, A. E. G., & Serrão, J. E. (2016). Multiple modes of action of the squamocin in the midgut cells of Aedes aegypti larvae. PLoS ONE, 11(8), 1–13. https://doi.org/10.1371/journal.pone.0160928

De la Torre, L. (2008). Enciclopedia de las plantas útiles del Ecuador. Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador. http://repositorio.educacionsuperior.gob.ec/handle/28000/3705

de Moraes, I. V. M., Ribeiro, P. R. V., Schmidt, F. L., Canuto, K. M., Zocolo, G. J., de Brito, E. S., Luo, R., Richards, K. M., Tran, K., & Smith, R. E. (2016). UPLC–QTOF–MS and NMR analyses of graviola (Annona muricata) leaves. Brazilian Journal of Pharmacognosy, 26(2), 174–179. https://doi.org/10.1016/j.bjp.2015.12.001

de Souza Barboza, T. J., Ferreira, A. F., de Paula Rosa Ignacio, A. C., & Albarello, N. (2015). Antimicrobial activity of Anonna mucosa (Jacq.) grown in vivo and obtained by in vitroculture. Brazilian Journal of Microbiology, 46(3), 785–789. https://doi.org/10.1590/S1517-838246320140468

Deccetti, S. F. C., Paiva, R., Duarte De Oliveira Paiva, P., & Aloufa, M. A. I. (2005). Micropropagation of Annona glabra L. from nodal segments. Fruits, 60(5), 319–325. https://doi.org/10.1051/fruits:2005038

Dey, P., Gogoi, H., Goyary, D., & Mandal, S. (2024). Unveiling the bioactive phytocompounds of various Annona species with their potential role in pharmacological progression. South African Journal of Botany, 173, 85–98. https://doi.org/10.1016/j.sajb.2024.08.004

Di Toto Blessing, L., Álvarez Colom, O., Popich, S., Neske, A., & Bardón, A. (2010). Antifeedant and toxic effects of acetogenins from Annona montana on Spodoptera frugiperda. Journal of Pest Science, 83(3), 307–310. https://doi.org/10.1007/s10340-010-0299-0

dos Santos, M. R. A., Ferreira, M. das G. R., & Braga, A. G. S. (2015). Callogenesis in leaf explants of Annona glabra L. Australian Journal of Basic and Applied Sciences, 235–238.

Encina, C. L., Barceló-Muñoz, A., Herrero-Castaño, A., & Pliego-Alfaro, F. (1994). In vitro morphogenesis of juvenile Annona cherimola Mill , bud explant. Journal of Horticultural Science, 69(6), 1053–1059. https://doi.org/10.1080/00221589.1994.11516544

Encina, C. L., Martin, E. C., Lopez, A. A., & Padilla, I. M. G. (2014). Biotechnology applied to Annona species: a review. Revista Brasileira de Fruticultura, 36(spe1), 17–21. https://doi.org/10.1590/s0100-29452014000500002

Erb, M., & Kliebenstein, D. J. (2020). Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiology, 184(1), 39–52. https://doi.org/10.1104/pp.20.00433

Erkens, R. H. J. (2021). Annona deceptrix: The IUCN red list of threatened speciesTM. https://doi.org/10.2305/IUCN.UK.2021-2.RLTS.T42828A176434191.en

Farooq, S. A., Farooq, T. T., & Rao, T. V. (2001). Micropropagation of Annona squamosa L. Using Nodal Explants. Pakistan Journal of Biological Sciences, 5(1), 43–46. https://doi.org/10.3923/pjbs.2002.43.46

Fernandes, M. H. de A., de Menezes, K. O., de Souza, A. M., Almeida, J. R. G. da S., Oliveira, J. E. de M., & Gervásio, R. de C. R. G. (2017). Bioactivity of the organic extracts of Annona vepretorum on Tetranychus urticae (Acari: Tetranychidae. Pesquisa Agropecuaria Brasileira, 52(9), 707–714. https://doi.org/10.1590/S0100-204X2017000900002

Fiaz, M., Martínez, L. C., Costa, M. da S., Cossolin, J. F. S., Plata-Rueda, A., Gonçalves, W. G., Sant’Ana, A. E. G., Zanuncio, J. C., & Serrão, J. E. (2018). Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Ecotoxicology and Environmental Safety, 156, 1–8. https://doi.org/10.1016/j.ecoenv.2018.02.080

Figueiredo, S. F. L., Albarello, N., & Viana, V. R. C. (2001). Micropropagation of Rollinia mucosa ( Jacq .) Baill. In Vitro Cell. Dev, Biol.-Plant, 37, 471–475. https://doi.org/10.1079/IVP2001196

Figueiredo, S. F. L., Simões, C., Albarello, N., & Viana, V. R. C. (2000). Rollinia mucosa cell suspension cultures: Establishment and growth conditions. Plant Cell, Tissue and Organ Culture, 63(2), 85–92. https://doi.org/10.1023/A:1006483822768

Figueiredo, S. F. L., Viana, V. R. C., Simões, C., Trugo, L. C., & Coelho Kaplan, M. A. (2003). Rollinia mucosa (Jacq.) Baill.: establishment of callus culture and lignan production. Revista Cubana de Plantas Medicinales, 8(3).

Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50(1), 151–158. https://doi.org/10.1016/0014-4827(68)90403-5

GBIF. (2024). GBIF Occurrence Download. https://doi.org/10.15468/dl.zcyebn

Geisler, F. C. S., Martins, L. N., Treptow, R. C. B., Baronio, C. A., Stupp, P., Ribeiro, L. P., Garcia, F. R. M., & Bernardi, D. (2019). Laboratory and field assessments of lethal and sublethal toxicities of acetogenin-based bioinsecticides against zaprionus indianus (Diptera: Drosophilidae). Chilean Journal of Agricultural Research, 79(4), 501–511. https://doi.org/10.4067/S0718-58392019000400501

Giraldo-Rivera, A. I., & Guerrero-Álvarez, G. E. (2018). Rollinia mucosa (Jacq.) Baillon (Annonaceae) active metabolites as alternative biocontrol agents against the lace bug Corythucha gossypii (Fabricius): an insect pest. Universitas Scientiarum, 23(1), 21. https://doi.org/10.11144/Javeriana.SC23-1.rmjb

Gonçalves, R. B., Trombin de Souza, M., Trombin de Souza, M., Bernardi, D., Ribeiro, L. do P., Pimentel, I. C., & Cassilha Zawadneak, M. A. (2022). Annona (Annonaceae) by-products derivatives: Toxicity to the European pepper moth and histological assessment. Crop Protection, 155, 105937. https://doi.org/10.1016/j.cropro.2022.105937

Goncalvez, G. L. P., Ribeiro, L. do P., Gimenes, L., & Vierira, P. C. (2015). Lethal and Sublethal Toxicities of Annona sylvatica (Magnoliales : Annonaceae) Extracts to Zabrotes subfasciatus (Coleoptera : Chrysomelidae : Bruchinae). Florida Entomologist, 98(3), 921–928.

González-Esquinca, A. R., Luna Cazáres, L. M., Schlie Guzmán, M. A., Chacón C., I. D. la C., Laguna Hernández, G., Flores Breceda, S., & Montoya Gerardo, P. (2012). In Vitro larvicidal evaluation of Annona muricata L., A. diversifolia Saff. and A. lutescens Saff. Extracts Against Anastrepha ludens Larvae (Diptera, Tephritidae). Interciencia, 37(4), 284–289.

Guerriero, G., Berni, R., Muñoz-sanchez, J. A., Apone, F., Abdel-salam, E. M., Qahtan, A. A., Alatar, A. A., & Cantini, C. (2018). Production of Plant Secondary Metabolites : Examples , Tips and Suggestions for Biotechnologists. https://doi.org/10.3390/genes9060309

Gunaseelan, R. J., Raj, A., Nagarajan, P., Perumal, S., Kumar, J., & Patil, S. J. (2025). Biotechnological Phytochemical Synthesis: Innovations, Challenges, Advantages, Implications (pp. 83–101). https://doi.org/10.1007/978-981-96-2790-5_3

Häkkinen, S. T., Legay, S., Rischer, H., Renaut, J., & Guerriero, G. (2024). Editorial: Plant cell factories: current and future uses of plant cell cultures. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1439261

Hidalgo, J. R., Neske, A., Iramain, M. A., Alvarez, P. E., Bongiorno, P. L., & Brandán, S. A. (2020). Experimental isolation and spectroscopic characterization of squamocin acetogenin combining FT-IR, FT-Raman and UV–Vis spectra with DFT calculations. Journal of Molecular Structure, 1219. https://doi.org/10.1016/j.molstruc.2020.128610

Hidalgo, J. R., Parellada, E. A., Bardón, A., Vera, N., & Neske, A. (2018). Insecticidal activity of Annonaceous acetogenins and their derivatives on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae). Journal of Agricultural Chemistry and Environment, 7(3), 105–116. https://doi.org/10.4236/jacen.2018.73010

Ikeuchi, M., Favero, D. S., Sakamoto, Y., Iwase, A., Coleman, D., Rymen, B., & Sugimoto, K. (2019). Molecular Mechanisms of Plant Regeneration. Annual Review of Plant Biology, 70(1), 377–406. https://doi.org/10.1146/annurev-arplant-050718-100434

Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. The Plant Cell, 25(9), 3159–3173. https://doi.org/10.1105/tpc.113.116053

Ilango, S., Sahoo, D. K., Paital, B., Kathirvel, K., Gabriel, J. I., Subramaniam, K., Jayachandran, P., Dash, R. K., Hati, A. K., Behera, T. R., Mishra, P., & Nirmaladevi, R. (2022). A Review on Annona muricata and Its Anticancer Activity. Cancers, 14(18). https://doi.org/10.3390/cancers14184539

Isman, M. B., & Seffrin, R. (2014). Natural insecticides from the annonaceae: A unique example for developing biopesticides. In Advances in Plant Biopesticides (pp. 21–33). Springer India. https://doi.org/10.1007/978-81-322-2006-0_2

Jara-Arancio, P., da Silva Carvalho, C., Carmona-Ortiz, M. R., Bustamante, R. O., Schmidt Villela, P. M., da Silva Andrade, S. C., Peña-Gómez, F. T., González, L. A., & Fleury, M. (2022). Genetic diversity and population structure of Jubaea chilensis, an endemic and monotype gender from Chile, based on SNP markers. Plants, 11(15), 1959. https://doi.org/10.3390/plants11151959

Jordan, M. (1988). Multiple shoot formation and rhizogenesis from cherimola (Annona cherimola L.) hypocotyls and petiole explants. Gartenbauwissenschaft (Germany, FR), 53(3).

Jordan, M., Iturriaga, L., Roveraro, C., & Goreux, A. (1991). Promotion of Annona cherimola in vitro Shoot Morphogenesis as Influenced by Antioxidants / Förderung der in vitro-Sproßentwicklung bei Annona cherimola durch Antioxidantien. Die Gartenbauwissenschaft, 56(5), 224–227.

Joseph, S. M., Dev, A. R. A., & A, K. (2023). Unveiling the volatile chemical variations of Annona essential oils and its associated pharmacological activities. Journal of Molecular Structure, 1292, 136082. https://doi.org/10.1016/j.molstruc.2023.136082

Joshi, N., Bhattarai, K., Sinha, S., Rawat, B., Rai, N., Anand, J., Sundriyal, M., & Rawat, J. M. (2024). Production of secondary metabolites from medicinal plants through tissue culture. In Secondary Metabolites and Biotherapeutics (pp. 63–77). Elsevier. https://doi.org/10.1016/B978-0-443-16158-2.00007-0

Keerthi, M. C., Suroshe, S. S., Doddachowdappa, S., Shivakumara, K. T., Mahesha, H. S., Rana, V. S., Gupta, A., Murukesan, A., Casini, R., Elansary, H. O., & Shakil, N. A. (2023). Bio-intensive tactics for the management of invasive fall armyworm for organic maize production. Plants, 12(3). https://doi.org/10.3390/plants12030685

Khare, S., Singh, N. B., Singh, A., Hussain, I., Niharika, K., Yadav, V., Bano, C., Yadav, R. K., & Amist, N. (2020). Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. Journal of Plant Biology, 63(3), 203–216. https://doi.org/10.1007/s12374-020-09245-7

Kudikala, H., Jogam, P., Sirikonda, A., Mood, K., & Allini, V. R. (2020). In vitro micropropagation and genetic fidelity studies using SCoT and ISSR primers in Annona reticulata L.: An important medicinal plant. Vegetos, 33(3), 446–457. https://doi.org/10.1007/s42535-020-00128-3

Leinonen, T., McCairns, R. J. S., O’Hara, R. B., & Merilä, J. (2013). QST–FST comparisons: evolutionary and ecological insights from genomic heterogeneity. Nature Reviews Genetics, 14(3), 179–190. https://doi.org/10.1038/nrg3395

Lemos, E. E. P., & Blake, J. (1996a). Micropropagation of juvenile and adult Annona squamosa. Plant Cell, Tissue and Organ Culture, 46, 77–79. https://doi.org/10.1007/BF00039698

Lemos, E. E. P., & Blake, J. (1996b). Micropropagation of juvenile and mature Annona muricata L. Journal of Horticultural Science and Biotechnology, 71(3), 395–403. https://doi.org/10.1080/14620316.1996.11515420

Lemos, E. E. P., & Blake, J. (1996c). Micropropagation of juvenile and mature Annona muricata L. Journal of Horticultural Science, 71(3), 395–403. https://doi.org/10.1080/14620316.1996.11515420

León Yánez, S., Valencia, R., Pitman, N., Endara, L., Ulloa-Ulloa, C., & Navarrete, H. (2019). Libro Rojo de las Plantas Endémicas del Ecuador. Publicaciones del Herbario QCA, Pontificia Universidad Católica del Ecuador, Quito.

Lloyd, G., & McCown, B. H. (1981). Woody Plant Medium (WPM)-A mineral nutrient formulation for microculture of woody plant species. HortScience, 16, 453–453.

Marchev, A. S., Yordanova, Z. P., & Georgiev, M. I. (2020). Green (cell) factories for advanced production of plant secondary metabolites. Critical Reviews in Biotechnology, 40(4), 443–458. https://doi.org/10.1080/07388551.2020.1731414

Massarolli, A., Pereira, M. J. B., & Foerster, L. A. (2017). Annona crassiflora mart. (Annonaceae): Effect of crude extract of seeds on larvae of soybean looper Chrysodeixis includens (Lepidoptera: Noctuidae). Bragantia, 76(3), 398–405. https://doi.org/10.1590/1678-4499.374

Miotto, J., Duarte, A. F., Bernardi, D., Ribeiro, L. P., Andreazza, F., & Cunha, U. S. (2020). Toxicities of acetogenin-based bioacaricides against two-spotted spider mite and selectivity to its phytoseiid predators. Experimental and Applied Acarology, 81(2), 173–187. https://doi.org/10.1007/s10493-020-00501-6

Moscatiello, R., Baldan, B., & Navazio, L. (2013). Plant Cell Suspension Cultures. In F. J. M. Maathuis (Ed.), Plant Mineral Nutrients. (Vol. 953, pp. 77–93). Springer New York LLC. https://doi.org/10.1007/978-1-62703-152-3_17

Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 26.

Muthu, R., Vishnupriya, R., Jeyarajan Nelson, S., Uma, D., & Santhanakrishnan, V. P. (2023). Insecticidal activity and changes in midgut histology of the generalist herbivore, Spodoptera litura F. (Lepidoptera: Noctuidae) in response to seed extract of Annona squamosa Linn. Journal of Applied and Natural Science, 15(1), 401–407. https://doi.org/10.31018/jans.v15i1.4371

Nagori, R., & Purohit, S. D. (2004). In vitro plantlet regeneration in Annona squamosa through direct shoot bud differentiation on hypocotyl segments. Scientia Horticulturae, 99, 89–98. https://doi.org/10.1016/S0304-4238(03)00084-0

Nair, S., Gupta, P. K., & Mascarenhas, A. F. (1983). Haploid plants from in vitro anther culture of Annona squamosa Linn. Plant Cell Reports, 2, 198–200.

Nair, S., Gupta, P. K., & Mascarenhas, A. F. (1984). In vitro propagation of Annona hybrid (Annona squamosa L. X Annona cherimola L.). Indian Journal of Horticulture, 160–165.

Nair, S., Gupta, P. K., Shirgurkar, M. V., & Mascarenhas, A. F. (1984). In vitro organogenesis from leaf explants of A. squamosa. Plant Cell Tissue Organ Culture, 3, 29–40.

Nair, S., Shirgurkar, M. V, & Mascarenhas, A. F. (1986). Studies on endosperm culture of Annona squamosa Linn. Plant Cell Reports, 5, 132–135.

Neske, A., Ruiz Hidalgo, J., Cabedo, N., & Cortes, D. (2020). Acetogenins from Annonaceae family. Their potential biological applications. Phytochemistry, 174(March), 112332. https://doi.org/10.1016/j.phytochem.2020.112332

Nevárez Loor, M. A., Macías Ponce, F. C., & Pico-Mendoza, J. (2024). Propagación in vitro de Annona deceptrix (westra) H. Rainer (Annonaceae) una especie en peligro de extinción en Ecuador. Bionatura, 1(1), 1–12. https://doi.org/10.21931/bj/2024.01.01.38

Nitsch, J. P., & Nitsch, C. (1969). Haploid plants from pollen grains. Science, 163(3862), 85–87. https://doi.org/10.1126/science.163.3862.85

Nordine, A. (2025). Trends in plant tissue culture, production, and secondary metabolites enhancement of medicinal plants: a case study of thyme. Planta, 261(4), 84. https://doi.org/10.1007/s00425-025-04655-8

Oliveira, L. M. de, Paiva, R., Santana, J. R. F. de, Alves, E., Nogueira, R. C., & Pereira, F. D. (2008). Effect of cytokinins on in vitro development of autotrophism and acclimatization of Annona glabra L. In Vitro Cellular & Developmental Biology - Plant, 44(2), 128–135. https://doi.org/10.1007/s11627-008-9119-0

Ovando-Domínguez, M. Y., Luján-Hidalgo, M. C., González-Mendoza, D., Vargas-Díaz, A. A., Ruiz-Lau, N., Gutiérrez-Miceli, F. A., & Lecona-Guzmán, C. A. (2019). Total phenols, flavonoids and antioxidant activity in Annona muricata and annona purpurea callus culture. Phyton, 88(2), 139–147. https://doi.org/10.32604/phyton.2019.06546

Ozyigit, I. I., Dogan, I., Hocaoglu-Ozyigit, A., Yalcin, B., Erdogan, A., Yalcin, I. E., Cabi, E., & Kaya, Y. (2023). Production of secondary metabolites using tissue culture-based biotechnological applications. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1132555

Padilla, I. M. G., & Encina, C. L. (2004). Micropropagation of adult cherimoya (Annona cherimola Mill.) CV. Fino de Jete. In Vitro Cellular & Developmental Biology - Plant, 40(2), 210–214. https://doi.org/10.1079/ivp2003521

Panchawat, S., & Ameta, C. (2021). Medicinal importance of plant metabolites. in chemistry of biologically potent natural products and synthetic compounds (pp. 1–19). Wiley. https://doi.org/10.1002/9781119640929.ch1

Pico-Mendoza, J., Madrid, L., Morillo, E., Flor, J., Arriagada, O., & Carrasco, B. (2024). Genetic diversity and structure populations in Annona deceptrix (Westra) H. Rainer (Annonaceae), an endangered species from Ecuador. Genetic Resources and Crop Evolution. https://doi.org/10.1007/s10722-024-02037-9

Pico-Mendoza, J., Madrid, L., Pinoargote, M., Limongi, R., Peña, G., Flor, J., Vélez, A., Quiroz, K., Arevalo, B., & Carrasco, B. (2024). Simple sequence repeat markers (SSR) in Annona deceptrix Westra H. Rainer, an endangered species of the Ecuadorian coast. Journal of Tropical Forest Science, 36(1), 132–138. https://doi.org/10.26525/jtfs2024.36.1.132

Pinoargote-Chang, M., Correa Londoño, G. A., Segovia, D., & Arias, J. P. (2025). Preliminary phytochemical screening and antioxidant activity of Annona deceptrix (Westra) H. Rainer an endemic and endangered species to Ecuador. Brazilian Journal of Biology, 85.

Porth, I., & El-Kassaby, Y. (2014). Assessment of the Genetic Diversity in Forest Tree Populations Using Molecular Markers. Diversity, 6(2), 283–295. https://doi.org/10.3390/d6020283

Rabou, F. A. A. (2006). Micropropagation of Annona senegalensis and Carica papaya through tissue culture technique. Bulletin of Faculty of Agriculture, Cairo University, 57(1), 125–146. https://doi.org/10.5555/20063118780

Rainer, H. (2001). Nomenclatural and taxonomic notes on Annona (Annonaceae). Annalen Des Naturhistorischen Museums in Wien, 103 B, 513–524.

Ramesh, P., Mallikarjuna, G., Sameena, S., Kumar, A., Gurulakshmi, K., Reddy, B. V., Reddy, P. C. O., & Sekhar, A. C. (2020). Advancements in molecular marker technologies and their applications in diversity studies. Journal of Biosciences, 45(1), 123. https://doi.org/10.1007/s12038-020-00089-4

Rangel, J., Liberal, Â., Catarino, S., Costa, J. C., Romeiras, M. M., & Fernandes, Â. (2024). Phytochemical and bioactive potentials of African Annonaceae species. Food Chemistry, 448, 139048. https://doi.org/10.1016/j.foodchem.2024.139048

Rasai, S., Kantharajah, A., & Dodd, W. (1994). The Effect of Growth-Regulators, Source of Explants and Irradiance on in vitro Regeneration of Atemoya. Australian Journal of Botany, 42(3), 333. https://doi.org/10.1071/BT9940333

Ribeiro, L. D. P., Santos, M. S., Gonçalves, G. L. P., & Vendramim, J. D. (2015). Toxicity of an Acetogenin-based bioinsecticide against Diaphorina citri (Hemiptera: Liviidae) and its parasitoid Tamarixia radiata (Hymenoptera: Eulophidae). Florida Entomologist, 98(3), 835–842. https://doi.org/10.1653/024.098.0304

Ribeiro, L. do P., Vendramim, J. D., Bicalho, K. U., Andrade, M. dos S., Fernandes, J. B., Moral, R. de A., & Demétrio, C. G. B. (2013). Annona mucosa Jacq. (Annonaceae): A promising source of bioactive compounds against Sitophilus zeamais Mots. (Coleoptera: Curculionidae). Journal of Stored Products Research, 55, 6–14. https://doi.org/10.1016/j.jspr.2013.06.001

Ribeiro, L. do P., Zanardi, O. Z., Vendramim, J. D., & Yamamoto, P. T. (2014). Comparative toxicity of an acetogenin-based extract and commercial pesticides against citrus red mite. Experimental and Applied Acarology, 64(1), 87–98. https://doi.org/10.1007/s10493-014-9810-2

Ribeiro, L. P., Akhtar, Y., Vendramim, J. D., & Isman, M. B. (2014). Comparative bioactivity of selected seed extracts from Brazilian Annona species and an acetogenin-based commercial bioinsecticide against Trichoplusia ni and Myzus persicae. Crop Protection, 62, 100–106. https://doi.org/10.1016/j.cropro.2014.04.013

Salgotra, R. K., & Chauhan, B. S. (2023). Genetic diversity, conservation, and utilization of plant genetic resources. Genes, 14(1), 174. https://doi.org/10.3390/genes14010174

Santana, J. R. F. de, Paiva, R., Pereira, F. D., & Oliveira, L. M. de. (2008). Estímulo do comportamento fotoautotrófico durante o enraizamento in vitro de Annona glabra L., I. desenvolvimento do sistema radicular e da parte aérea. Ciência e Agrotecnologia, 32(1), 80–86. https://doi.org/10.1590/S1413-70542008000100012

Santana, J. R. F. de, Paiva, R., Souza, A. V. de, & Oliveira, L. M. de. (2011a). Effect of different carbon sources on the in vitro multiplication of Annona sp. Ciência e Agrotecnologia, 35(3), 487–493. https://doi.org/10.1590/S1413-70542011005000002

Santana, J. R. F. de, Paiva, R., Souza, A. V. de, & Oliveira, L. M. de. (2011b). Effect of different culture tube caps and concentrations of activated charcoal and sucrose on in vitro growth and budding induction of Annona glabra L. Ciência e Agrotecnologia, 35(5), 916–923. https://doi.org/10.1590/S1413-70542011000500008

Scheunemann, T., Krüger, A. P., Piovesan, B., Vieira, J. G. A., do Prado Ribeiro, L., Schiedeck, G., Bernardi, D., & Nava, D. E. (2022). Potential use of Annona (Annonaceae) by-products to Palpita forficifera management: Lethal and sublethal toxicities and residual effect in olive plants. Crop Protection, 160, 106035. https://doi.org/10.1016/j.cropro.2022.106035

Shirk, R. Y., Hamrick, J. L., Zhang, C., & Qiang, S. (2014). Patterns of genetic diversity reveal multiple introductions and recurrent founder effects during range expansion in invasive populations of Geranium carolinianum (Geraniaceae). Heredity, 112(5), 497–507. https://doi.org/10.1038/hdy.2013.132

Soares, M. C. E., Baldin, E. L. L., do Prado Ribeiro, L., dos Santos, M. C., Batista, Y., & Vendramim, J. D. (2021). Lethal and Sublethal Effects of Annona spp. Derivatives on Bemisia tabaci MEAM 1 (Hemiptera: Aleyrodidae) in Tomato. Neotropical Entomology, 50(6), 966–975. https://doi.org/10.1007/s13744-021-00902-1

Souto, A. L., Sylvestre, M., Tölke, E. D., Tavares, J. F., Barbosa-Filho, J. M., & Cebrián-Torrejón, G. (2021). Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules, 26(16). https://doi.org/10.3390/molecules26164835

Souza, C. M., Baldin, E. L. L., Ribeiro, L. P., Silva, I. F., Morando, R., Bicalho, K. U., Vendramim, J. D., & Fernandes, J. B. (2017). Lethal and growth inhibitory activities of Neotropical Annonaceae-derived extracts, commercial formulation, and an isolated acetogenin against Helicoverpa armigera. Journal of Pest Science, 90(2), 701–709. https://doi.org/10.1007/s10340-016-0817-9

Souza, C. M. de, Baldin, E. L. L., Ribeiro, L. do P., Santos, T. L. B. dos, Silva, I. F. da, Morando, R., & Vendramim, J. D. (2019). Antifeedant and growth inhibitory effects of Annonaceae derivatives on Helicoverpa armigera (Hübner). Crop Protection, 121. https://doi.org/10.1016/j.cropro.2019.03.008

Tormo, J. R., Gonzá Lez, M. C., Cortes, D., & Estornell, E. (1999). Kinetic Characterization of Mitochondrial Complex I Inhibitors Using Annonaceous Acetogenins. http://www.idealibrary.com

Upadhyay, R., Saini, R., Shukla, P. K., & Tiwari, K. N. (2025). Role of secondary metabolites in plant defense mechanisms: A molecular and biotechnological insights. Phytochemistry Reviews, 24(1), 953–983. https://doi.org/10.1007/s11101-024-09976-2

Wang, L. Da, Qiu, D. Y., Chen, J. Y., Han, Y. F., Zheng, J. H., & Guo, D. A. (2002). Callus cultures of Annona squamosa for the production of Annonaceous acetogenins. Journal of Asian Natural Products Research, 4(3), 171–174. https://doi.org/10.1080/1028602021000000062

Westra, L. Y. Th. (1995). Studies in Annonaceae XXIV. A taxonomic revision of Raimondia Safford. Bot. Jahrb. Syst., 117(3), 273–297.

Wu, T., Kerbler, S. M., Fernie, A. R., & Zhang, Y. (2021). Plant cell cultures as heterologous bio-factories for secondary metabolite production. Plant Communications, 2(5). https://doi.org/10.1016/j.xplc.2021.100235

Zobayed, S. M. A., Armstrong, J., & Armstrong, W. (2002). Multiple shoot induction and leaf and flower bud abscission of Annona cultures as affected by types of ventilation. Plant Cell, Tissue and Organ Culture, 69.

Zubaidi, S. N., Mohd Nani, H., Ahmad Kamal, M. S., Abdul Qayyum, T., Maarof, S., Afzan, A., Mohmad Misnan, N., Hamezah, H. S., Baharum, S. N., & Mediani, A. (2023). Annona muricata: Comprehensive Review on the Ethnomedicinal, Phytochemistry, and Pharmacological Aspects Focusing on Antidiabetic Properties. Life, 13(2), 353. https://doi.org/10.3390/life13020353

Descargas

Publicado

2025-07-07

Cómo citar

Pinoargote-Chang, M. ., Corozo-Quiñónez, L. ., Saltos-Rezabala, L. A. ., & Arias Echeverri, J. P. . (2025). Annona deceptrix as a potential biofactory for secondary metabolites using plant cell and tissue cultures. Scientia Agropecuaria, 16(3), 439-456. https://doi.org/10.17268/sci.agropecu.2025.034

Número

Sección

Artículos de Revisión