Low-carbon agricultural technologies improve forage and feed production in the Caatinga biome, Brazil: Characteristics, comparison, effects of climate change, resilience, local development, and food security

Autores/as

  • Vanina Zini Antunes de Mattos Programa de Planejamento Energético (PPE), Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa em Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil. https://orcid.org/0000-0003-4476-2237
  • Bruna Guerreiro Tavares Projeto Rural Sustentável Caatinga (PRS Caatinga), Fundação Brasileira para o Desenvolvimento Sustentável (FBDS), Rio de Janeiro, Brazil. https://orcid.org/0000-0003-4871-5251
  • Renata da Costa Barreto Projeto Rural Sustentável Caatinga (PRS Caatinga), Fundação Brasileira para o Desenvolvimento Sustentável (FBDS), Rio de Janeiro, Brazil. https://orcid.org/0000-0002-3238-1720
  • Giselle Parno Guimarães Projeto Rural Sustentável Caatinga (PRS Caatinga), Fundação Brasileira para o Desenvolvimento Sustentável (FBDS), Rio de Janeiro, Brazil. https://orcid.org/0000-0002-2400-2655
  • Marcos Aurélio Vasconcelos de Freitas Instituto Virtual Internacional de Mudanças Globais (IVIG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil. https://orcid.org/0000-0002-9242-1288

DOI:

https://doi.org/10.17268/sci.agropecu.2024.046

Palabras clave:

GHG Emission, Semiarid, ICLS, Ruminants, SWOT, AHP, Production Factors

Resumen

Adjustments in Brazilian livestock are necessary to minimize greenhouse gas (GHG) emissions, since the largest source of methane comes from ruminants’ enteric fermentation, and of carbon from deforestation. Low-carbon agriculture technologies (LCAT) contribute to mitigating these emissions and this study evaluates the role of these technologies on ruminant forage production in Caatinga. A Strength, Weakness, Opportunity, and Threats analysis was used to elucidate the main features, followed by an Analytic Hierarchical Process, ranking the LCAT, and a risk analysis. Integrated Crop-Livestock-Forest System (ICLFS) is the most recommended technology, followed by Sustainable Forest Management (SFM) and Recovery of Degraded Areas with Pastures (RDA-P). The results can aid in the choice of the LCAT to be implemented by the smallholder in Caatinga, demonstrating the need to strengthen rural technical assistance, so that there is a real benefit to the producer and the environment.

Citas

Abdalla, K., Chivenge, P., Ciais, P., & Chaplot, V. (2016). No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis. Biogeosciences, 13, 3619–3633. https://doi.org/10.5194/bg-13-3619-2016

Almeida, R. G., Andrade, C. M. S., Paiullo, D. S. C., Fernandes, P. C. C., Cavalcante, A. C. R., Barbosa, R. A., & Valle, C. B. (2013). Brazilian agroforestry systems for cattle and sheep. Tropical Grasslands Forrajes Tropicales, 1(2), 175–183.

Alvalá, R. C. S., Cunha, A. P. M. A., Brito, S. S. B., Seluchi, M. E., Marengo, J. A., Moraes, O. L. L., & Carvalho, M. A. (2019). Drought monitoring in the Brazilian Semiarid region. Earth Sciences - Anais da Academia Brasileira de Ciências, 91(1). https://doi.org/10.1590/0001-3765201720170209

Anuga, S. W., Chirinda, N., Nukpezah, D., Ahenkan, A., Andrieu, N., & Gordon, C. (2020). Towards low carbon agriculture: Systematic-narratives of climate-smart agriculture mitigation potential in Africa. Current Research in Environmental Sustainability, 2, 100015. https://doi.org/10.1016/j.crsust.2020.100015

Araújo Filho, J. A. (2014). Proposta para a implementação do manejo pastoril sustentável da Caatinga. Ministério do Meio Ambiente (MMA): Brasília, Brazil, 135 p.

Barbosa, A. L. Voltolini, T. V., Menezes, D. R., Moraes, S. A., Nascimento, J. C. S., & Rodrigues, R. T. S. (2017) Intake, digestibility, growth performance, and enteric methane emission of Brazilian semiarid non-descript breed goats fed diets with different forage to concentrate rations. Tropical Animal Health and Production, 50(2). https://doi.org/10.1007/s11250-017-1427-0

Brasil. (2012). Plano Setorial de Mitigação e de Adaptação às Mudanças Climáticas para a Consolidação de uma Economia de Baixa Emissão de Carbono na Agricultura: plano ABC (Agricultura de Baixa Emissão de Carbono). Ministério da Agricultura, Pecuária e Abastecimento (MAPA)/ACS: Brasília, Brasil, 173 p.

Cavalcante, A. R. C., Fernandes, F. E. P, Tonucci, R. G., & Silva, N. L. (2013). Tecnologias para o uso pastoril sustentável da Caatinga. In D. A. Furtado, J. G. V. Baracuhy, & P. R. M. Francisco (Eds.), Difusão de Tecnologias Apropriadas para o Desenvolvimento Sustentável do Semiárido Brasileiro. (cap. VI, pp. 95-112). EPGRAF: Campina Grande, PB, Brazil.

Chi, S., Yao, L., Zhao, G., Lu, W., & Zhao, M. (2024). The performance of low carbon agricultural technologies on farmers’ welfare: A meta-regression analysis of Asian cases. Ecological Economics, 224, 108318. https://doi.org/10.1016/j.ecolecon.2024.108318

Ciancio, P., Barreto, R., Gemunder, L., Leitão, P., & Braga, J. (2024). PRS Caatinga [livro eletrônico]: uma trajetória de inovação no semiárido brasileiro. Trad. David Hathaway. 1.ed. Ed. dos Autores: Rio de Janeiro, RJ, Brazil. ISBN 978-65-00-92073-4. https://prscaatinga.org.br/IMG/pdf/livro-prsc_d9631.pdf

Eugène, M., Klumpp, K., & Sauvant, D. (2021). Methane mitigating options with forages fed to ruminants. Grass Forage Science, 76 (2), 196–204. https://doi.org/10.1111/gfs.12540

Feltran-Barbieri R., & Féres J. G. (2021) Degraded pastures in Brazil: improving livestock production and forest restoration. Royal Society Open Science, 8, 201854. https://doi.org/.1098/rsos.201854

Fernández-Ortega, J., Álvaro-Fuentes, J., & Cantero-Martínez, C. (2023). The use of double-cropping in combination with no-tillage and optimized nitrogen fertilization reduces soil N2O emissions under irrigation. Science of the Total Environment, 857, 159458. https://doi.org/10.1016/j.scitotenv.2022.159458

Florida Rofner, N., Paredes Arce, M., Paredes Salazar, R. M., Navarro Vasquez, L., & Rengifo Rojas, A. (2022). An organic management alternative that improves soil quality in cocoa plantations under agroforestry systems. Scientia Agropecuaria, 13(4), 335-342. https://doi.org/10.17268/sci.agropecu.2022.030

Fouts, J. Q., Honan, M. C, Roque, B. M, Tricarico, J. M., & Kebreab, E. (2022). Enteric methane mitigation interventions. Translational Animal Science, 6(2), txac041. https://doi.org/10.1093/tas/txac041

Gontijo Neto, M. M., Borghi, E., Alvarenga, R. C., & Viana, M. C. M. (2018). Integração Lavoura-Pecuária-Floresta (ILPF). In M. M. Nobre, & I. R. Oliveira (Eds.), Agricultura de baixo carbono: tecnologias e estratégias de implantação (cap. 5, pp. 139-178). Embrapa: Brasília, DF, Brazil.

Hui, M., Yu-rong, Q., & Yong, F. (2023). Risk preferences and the low-carbon agricultural technology adoption: Evidence from rice production in China. Journal of Integrative Agriculture, 22(8), 2577–2590. https://doi.org/10.1016/j.jia.2023.07.002

IBGE (Instituto Brasileiro de Geografia e Estatística), (INSA) Instituto Nacional do Semiárido. (2000). Mapa do Recorte do Semiárido Brasileiro e do Bioma Caatinga. DATUM: SIRGAS. Escala numérica 1:9.000.000. Governo do Brasil, Brazil.

IPCC (Intergovernmental Panel on Climate Change). (2014). Climate Change 2014: Impacts, Adaptation and Vulnerability. Working group II contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (AR5), IPCC: Geneva, Switzerland.

Iwata, B. D. F., Brandão, M. L. S. M., Braz, R. D. S., Leite, L. F. C., & Costa, M. C. G. (2021). Total and particulate contents and vertical stratification of organic carbon in agroforestry system in Caatinga. Revista Caatinga, 34, 443-451. https://doi.org/10.1590/1983-21252021v34n220rc

Lima, M. L. F., Souza, S. M. F., Sá, I. V., & Santana, O. A. (2023). Deep learning with aerial surveys for extensive livestock hotspot recognition in the Brazilian Semi-arid Region. Ciência e Agrotecnologia, 47, e010922. https://doi.org/10.1590/1413-7054202347010922

Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability, 13(1318). https://doi.org/10.3390/su13031318

Menezes, S. S. M., & Silvas, J. N. G. (2024). Exploring socio-biodiversity alternatives in Sergipe’s Sertão - Brazil: the leading role of women, family farmers, and traditional groups in Caatinga conservation. Sustainability in Debate, 15(2), 169-185. https://doi.org/10.18472/SustDeb.v15n2.2024.54239

Miccolis, A., Peneireiros, F. M., Vieira, D. L. M., Marques, H. R., & Hoffmann, M. R. M. (2019). Restoration through agroforestry: options for reconciling livelihoods with conservation in the Cerrado and Caatinga Biomes in Brazil. Experimental Agriculture, 55(S1), 208–225. https://doi.org/10.1017/S0014479717000138

Milhorance, C., Le Coq, J., Sabourin, E., Andrieu, N., Mesquita, P., Cavalcantes, L., & Nogueira, D. (2022). A policy mix approach for assessing rural household resilience to climate shocks: Insights from Northeast Brazil, International Journal of Agricultural Sustainability, 20(4), 675-691. https://doi.org/10.1080/14735903.2021.1968683

Nasuti, S., Eiró, F., & Lindoso, D. (2013). Agricultural Challenges in the Brazilian Semiarid Region. Sustentabilidade em Debate, 4(2), 276-298. https://doi.org/10.18472/SustDeb.v4n2.2013.10049

Newton, P., Gomez, A. E. A., Jung, S., Kelly, T., Mendes, T.A., Rasmussen, L. V., Reis, J. C., Rodrigues, R. A. R., Tipper, R., Horst, D., & Watkins, C. (2016). Overcoming barriers to low carbon agriculture and forest restoration in Brazil: The Rural Sustentável project. World Development Perspectives, 4, 5–7. https://doi.org/10.1016/j.wdp.2016.11.011

Pinheiro, F. M., & Nair, P. K. R. (2018). Silvopasture in the Caatinga biome of Brazil: A review of its ecology, management, and development opportunities. Forest Systems, 27(1), eR01S. https://doi.org/10.5424/fs/2018271-12267

Rangel, J. H. A., Moraes, S. A., Tonucci, R. G., Amaral, A. J., Zonta, J. H., Souza, S. F., Santos, R. D., Muniz, E. N., & Piovezan, U. (2020). Sistemas de integração lavoura-pecuária-floresta: uma análise temporal de sua utilização no Semiárido brasileiro. Revista Científica de Produção Animal, 22(2), 81-89. https://doi.org/10.5935/2176-4158/rcpa.v22n2p81-89

Rathmann, R., Araujo, R. V., Cruz, M. R., & Mendonça, A. M. (2017). Trajetórias de mitigação e instrumentos de políticas públicas para alcance das metas brasileiras no acordo de Paris. Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC)/ ONU, Brasília, DF, Brazil. 64 p.

Saaty, T. L. (2005). Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Costs, and Risks. RWS Pub.: Pittsburgh, USA. 343p.

Sahani, N. (2021). Application of hybrid SWOT-AHP-FuzzyAHP model for formulation and prioritization of ecotourism strategies in Western Himalaya, India. International Journal of Geoheritage and Parks, 9(4), 349–362. https://doi.org/10.1016/j.ijgeop.2021.08.001

Schäler, J., Addo, S., Thaller, G., & Hinrichs, D. (2019). Exploration of conservation and development strategies with a limited stakeholder approach for local cattle breeds. Animal, 13(12), 2922–2931. https://doi.org/10.1017/S1751731119001447

Shajedul, I. (2021). Evaluation of low-carbon sustainable technologies in agriculture sector through grey ordinal priority approach. Science Insight - International Journal of Grey Systems, 1 (1), 5–26. https://doi.org/10.52812/ijgs.3

Signor, D., Medeiros, T. A. F., Moraes, S. A., Corrêa, L. C., Tomazi, M., Moura, M. S. B., & Deon, M. (2022). Soil greenhouse gases emissions in a goat production system in the Brazilian semiarid region. Special Supplement: Climate Change in Agriculture, Pesquisa Agropecuária Tropical Goiânia, 52, e72371. https://doi.org/10.1590/1983-40632022v5272371

Silva, M. V., Pandorfi, H., Lopes, P. M. O., Silva, J. L. B., Almeida, G. L. P., Silva, D. A. O., Santos, A., Rodrigues, J. A. M., Batista, P. H. D., & Jardim, A. M. R. F. (2020). Pilot monitoring of Caatinga spatial-temporal dynamics through the action of agriculture and livestock in the Brazilian semiarid. Remote Sensing Applications: Society and Environment, 19, e100353. https://doi.org/10.1016/j.rsase.2020.100353

Socolowski, F., Vieira, D. C. M., Souza, B. R., Melo, F. P. L, & Rodrigues, R. G. (2021). Restoration in Caatinga: a proposal for revegetation methods for the most exclusive and least known ecosystem in Brazil. Multequina, 30 (2), 247-263.

Su, M., Jiang, R., & Li, R. (2017). Investigating Low-Carbon Agriculture: Case Study of China’s Henan Province. Sustainability, 9, 2295. https://doi.org/10.3390/su9122295

Suela, A. G. L., Suela, G. L., & Carlos, S. M. (2023). Fatores que influenciam a recuperação de pastagens degradadas pelos agricultores da Bacia hidrográfica do Rio das Contas. Revista de Economia e Agronegócio, 21(1), 1679-1614.

Tabarelli, M., Leal, I. R., Scarano, F. R., & Silva, J. M. C. (2017). The Future of the Caatinga. In J. M. C. I. Silva, R. Leal, & M. Tabarelli (Eds.), Caatinga: The Largest Tropical Dry Forest Region in South America (pp. 461–474). Springer International Publishing.

Tolmasquim, M. T., Senra, P. M. A., Gouvêa, A. R., Pereira Jr., A. O., Alves, A. C., & Moszkowicz, M. (2020). Strategies of electricity distributors in the context of distributed energy resources diffusion. Environmental Impact Assessment Review, 84, 106429. https://doi.org/10.1016/j.eiar.2020.106429

Torres, M. G., Soriano, R., Peralta, J. J., Alejos, J. I., Sánchez, P., Arias, L., Campos, R. G., & Almaraz, I. (2020). Challenges of livestock: climate change, animal welfare and agroforestry. Large Animal Review, 26(1), 39-45.

Vinholis, M. M. B., Souza Filho, H. M., Shimata, I., Oliveira, P. P. A., & Pedroso, A. F. (2021). Economic viability of a crop-livestock integration system. Ciência Rural, 51(2), e20190538. https://doi.org/10.1590/0103-8478cr20190538

Xiong, C., Yang, D., Huo, J., & Zhao, Y. (2016). The relationship between agricultural carbon emissions and agricultural economic growth and policy recommendations of a Low-carbon agriculture economy. Polish Journal of Environmental. Studies, 25 (5), 2187-2195. https://doi.org/10.15244/pjoes/63038

Zhou, W., He, J., Liu, S., & Xu, D. (2023). How Does Trust Influence Farmers’ Low-Carbon Agricultural Technology Adoption? Evidence from Rural Southwest, China. Land, 12(2), 466. https://doi.org/10.3390/land12020466

Descargas

Publicado

2024-11-12

Cómo citar

Antunes de Mattos, N. Z., Gerreiro Tavares, B., da Costa Barreto, R., Parno Guimarães, G., & Vasconcelos de Freitas, M. A. (2024). Low-carbon agricultural technologies improve forage and feed production in the Caatinga biome, Brazil: Characteristics, comparison, effects of climate change, resilience, local development, and food security. Scientia Agropecuaria, 15(4), 629-639. https://doi.org/10.17268/sci.agropecu.2024.046

Número

Sección

Artículos originales