Modificación química de almidón procedente de semillas de frutos: Métodos, propiedades y aplicaciones
DOI:
https://doi.org/10.17268/sci.agropecu.2024.024Palabras clave:
semilla de frutos, grado de sustitución (DS), carbonilos, carboxilos, esterificación, eterificación, entrecruzamientoResumen
Las semillas de frutos, generalmente consideradas como residuos tras el consumo de la pulpa fresca, emergen como una fuente de almidón no convencional con potencial innovador. Este estudio se enfoca en resaltar la relevancia de estas semillas al explorar métodos de modificación química en esta fuente de almidón que aportan un valor añadido al transformar sus propiedades. La revisión subraya la influencia de factores clave, como el tipo de reactivo químico, su concentración, los parámetros de reacción (pH, temperatura, tiempo) y la fuente botánica de la semilla, en el grado de modificación y las propiedades morfológicas y funcionales resultantes del almidón. Se destaca la importancia del acondicionamiento específico durante el proceso de modificación química, ya que contribuye significativamente a mejorar las propiedades del almidón modificado a partir de semillas de frutos. En tal sentido, se abren nuevas perspectivas para aprovechar eficientemente las semillas de frutos, transformándolas en una valiosa fuente de almidón con aplicaciones diversas tanto en la industria alimentaria como en la no alimentaria.
Citas
Adewale, P., Yancheshmeh, M. S., & Lam, E. (2022). Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohydrate Polymers, 291, 119590. https://doi.org/10.1016/j.carbpol.2022.119590
Agama-Acevedo, E., Bello-Pérez, L. A., Pacheco-Vargas, G., Nuñez-Santiago, M. C., Evangelista-Lozano, S., & Gutiérrez, T. J. (2022). Starches isolated from the pulp and seeds of unripe pouteria campechiana fruits as potential health-promoting food additives. Starch, 75(1-2), 2200089. https://doi.org/10.1002/star.202200089
Agwamba, E. C., Hassan, L. G., & Achor, M. (2016). Physiochemical Analysis of Carboxymethyl Mango (Mangifera Indica) Starch. IOSR Journal of Applied Chemistry, 9, 69-74. https://doi.org/10.9790/5736-0912016974
Agwamba, E. C., Maxwell, T. K., & Nwasuka, S. (2018). Effect of Carboxymethylation on Porosity and Flow Property of Mango Starch. International Journal of Scientific & Engineering Research, 9(6).
Alemu, N., Balakrishnan, S., & Debtera, B. (2022). Extraction and Characterisation of Avocado Seed Starch, and Its Blend with Enset Cellulosic. Advances in Materials Science and Engineering, 2022, e9908295. https://doi.org/10.1155/2022/9908295
Alvarez-Yanamango, E., Chumpitaz, G., & Fredy, H. (2020). Recuperación y caracterización del almidón de semilla de Lúcuma (Pouteria lucuma) con potencial aplicación industrial. http://laccei.org/LACCEI2020-VirtualEdition/meta/FP587.html
Alves, I. R., Albuquerque, F. S. M. de, Aquino, J. de S., & Queiroga Neto, V. (2013). The effect of chemical modification by cross-linking reaction on the properties of starch made of Persea americana Mill avocado seeds. Boletim do Centro de Pesquisa e Processamento de Alimentos, 31(2), 295-308.
Alves, I. R., Magnani, M., Albuquerque, F. S. M. de, Batista, K. S., Aquino, J. de S., & Queiroga-Neto, V. (2017). Characterization of the chemical and structural properties of native and acetylated starches from avocado (Persea americana Mill.) seeds. International Journal of Food Properties, 20(sup1), S279-S289. https://doi.org/10.1080/10942912.2017.1295259
Amorim, T. S., Andrade, I. H. P., Otoni, C. G., Camilloto, G. P., & Cruz, R. S. (2021). Tailoring Breadfruit (Artocarpus altilis) Starch: Cross-Linking Starch from This Non-Conventional Source towards Improved Technologically Relevant Properties and Enabled Food Applications. Starch 73(11-12), 2100058. https://doi.org/10.1002/star.202100058
Aparicio-Saguilán, A., Vázquez-León, L. A., Martínez-Cigarroa, A. S., Carpintero-Tepole, V., Fernández Barbero, G., Acosta-Osorio, A. A., & Páramo-Calderón, D. E. (2024). Characterization of Starch from Jinicuil (Inga jinicuil) Seeds and Its Evaluation as Wall Material in Spray Drying. Agronomy, 14(2), Article 2. https://doi.org/10.3390/agronomy14020272
Apriani, M., Cahyono, L., Utomo, A. P., Nugraha, A. T., & Alfira, D. C. N. (2022). Preliminary investigation of bioplastics from durian seed starch recovery using PEG 400 for reducing marine debris. Journal of Ecological Engineering, 23(2). https://doi.org/10.12911/22998993/144824
Aqlil, M., Moussemba Nzenguet, A., Essamlali, Y., Snik, A., Larzek, M., & Zahouily, M. (2017). Graphene Oxide Filled Lignin/Starch Polymer Bionanocomposite: Structural, Physical, and Mechanical Studies. Journal of Agricultural and Food Chemistry, 65(48), 10571-10581. https://doi.org/10.1021/acs.jafc.7b04155
Ashogbon, A. O. (2021). Dual modification of various starches: Synthesis, properties and applications. Food Chemistry, 342, 128325. https://doi.org/10.1016/j.foodchem.2020.128325
Babić, J., Šubarić, D., Ackar, D., Kovačević, D., Piližota, V., & Kopjar, M. (2007). Preparation and characterization of acetylated tapioca starches. Deutsche Lebensmittel-Rundschau, 103(12), 580-585.
Bai, Y., & Shi, Y.-C. (2011). Structure and preparation of octenyl succinic esters of granular starch, microporous starch and soluble maltodextrin. Carbohydrate Polymers, 83(2), 520-527. https://doi.org/10.1016/j.carbpol.2010.08.012
Bello-Pérez, L. A., Agama-Acevedo, E., Zamudio-Flores, P. B., Mendez-Montealvo, G., & Rodriguez-Ambriz, S. L. (2010). Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch. LWT - Food Science and Technology, 43(9), 1434-1440. https://doi.org/10.1016/j.lwt.2010.04.003
Bertoft, E. (2017). Understanding Starch Structure: Recent Progress. Agronomy, 7(3), 3. https://doi.org/10.3390/agronomy7030056
Chandrasekar, C. M., Nespoli, L., Bellesia, T., Ghaani, M., Farris, S., & Romano, D. (2024). Fabrication of double layer nanoparticle infused starch-based thermoplastic food packaging system for meat preservation. International Journal of Biological Macromolecules, 254, 127689. https://doi.org/10.1016/j.ijbiomac.2023.127689
Chen, Q., Yu, H., Wang, L., Abdin, Z., Chen, Y., et al. (2015). Recent progress in chemical modification of starch and its applications. RSC Advances, 5(83), 67459-67474. https://doi.org/10.1039/C5RA10849G
Chen, Y., Su, Y., Bai, R., Li, J., & Zheng, T. (2022). Preparation and characterization of octenyl succinic anhydride-modified ginkgo seed starch with enhanced physicochemical and emulsifying properties. Journal of Food Science, 87(10), 4453-4464. https://doi.org/10.1111/1750-3841.16321
Chong, W. T., Uthumporn, U., Karim, A. A., & Cheng, L. H. (2013). The influence of ultrasound on the degree of oxidation of hypochlorite-oxidized corn starch. LWT, 50(2), 439-443. https://doi.org/10.1016/j.lwt.2012.08.024
Chowdhury, M., Hossain, N., Noman, T. I., Hasan, A., Shafiul, A., & Mohammod Abul, K. (2022). Biodegradable, physical and microbial analysis of tamarind seed starch infused eco-friendly bioplastics by different percentage of Arjuna powder. Results in Engineering, 13, 100387. https://doi.org/10.1016/j.rineng.2022.100387
Chung, H.-J., Woo, K.-S., & Lim, S.-T. (2004). Glass transition and enthalpy relaxation of cross-linked corn starches. Carbohydrate Polymers, 55(1), 9-15. https://doi.org/10.1016/j.carbpol.2003.04.002
Cornelia, M., & Christianti, A. (2018). Utilization of modified starch from avocado ( Persea americana Mill.) seed in cream soup production. IOP Conference Series: Earth and Environmental Science, 102, 012074. https://doi.org/10.1088/1755-1315/102/1/012074
Costa, B. P., Carpiné, D., Ikeda, M., Alves, F. E. B. da S., de Melo, A. M., & Ribani, R. H. (2022). Developing a bioactive and biodegradable film from modified loquat (Eriobotrya japonica Lindl) seed starch. Journal of Thermal Analysis and Calorimetry, 147(24), 14297-14313. https://doi.org/10.1007/s10973-022-11780-z
Costa, B. P., Carpiné, D., Ikeda, M., Pazzini, I. A. E., da Silva Bambirra Alves, F. E., de Melo, A. M., & Ribani, R. H. (2023). Bioactive coatings from non-conventional loquat (Eriobotrya japonica Lindl.) seed starch to extend strawberries shelf-life: An antioxidant packaging. Progress in Organic Coatings, 175, 107320. https://doi.org/10.1016/j.porgcoat.2022.107320
Costa-Conto, L., Plata-Oviedo, M. S. V., Joy Steel, C., & Chang, Y. K. (2011). Physico–chemical, morphological, and pasting properties of Pine nut (Araucaria angustifolia) starch oxidized with different levels of sodium hypochlorite. Starch, 63(4), 198-208. https://doi.org/10.1002/star.201000133
Das, S., & Das, M. K. (2019). Synthesis and characterization of thiolated jackfruit seed starch as a colonic drug delivery carrier. International Journal of Applied Pharmaceutics, 53-62. https://doi.org/10.22159/ijap.2019v11i3.31895
Einstein, A., Teodosio, M. de M., Hérica, R., Araújo, C. E. R., Onias, E. A., Oliveira, A., & Santos, E. da N. (2020). Application of tamarind seed starch as edible coating in the post-harvest quality of grapes ‘Isabel’ (Vitis labrusca × Vitis vinifera L.). https://doi.org/10.21475/ajcs.20.14.06.p2250
Elomaa, M., Asplund, T., Soininen, P., Laatikainen, R., Peltonen, S., Hyvärinen, S., & Urtti, A. (2004). Determination of the degree of substitution of acetylated starch by hydrolysis, 1H NMR and TGA/IR. Carbohydrate Polymers, 57(3), 261-267. https://doi.org/10.1016/j.carbpol.2004.05.003
Esua, O. J., Okonkwo, C. E., Ajani, C. K., Bassey, E. J., Ali, M., Hussain, N., Bassey, A. P., Adeyanyu, A. A., Chin, N. L., Zeng, X.-A., & Liu, H. (2024). Chapter 2—Litchi seed starch-isolation, modification, and characterization. En J. M. Lorenzo & S. P. Bangar (Eds.), Non-Conventional Starch Sources (pp. 21-59). Academic Press. https://doi.org/10.1016/B978-0-443-18981-4.00002-1
Fan, Y., & Picchioni, F. (2020). Modification of starch: A review on the application of “green” solvents and controlled functionalization. Carbohydrate Polymers, 241, 116350. https://doi.org/10.1016/j.carbpol.2020.116350
Fasuan, T. O., & Akanbi, C. T. (2018). Oxidation of Amaranthus viridis starch: Amylose content evaluation. Journal of Food Processing and Preservation, 42(11), e13813. https://doi.org/10.1111/jfpp.13813
Ferraz, C. A., Fontes, R. L. S., Fontes-Sant’Ana, G. C., Calado, V., López, E. O., & Rocha-Leão, M. H. M. (2019). Extraction, modification, and chemical, thermal and morphological characterization of starch from the agro-industrial residue of mango (Mangifera indica L) var. Ubá. Starch, 71, 1800023. https://doi.org/10.1002/star.201800023
Fonseca, L. M., Gonçalves, J. R., El Halal, S. L. M., Pinto, V. Z., Dias, A. R. G., Jacques, A. C., & Zavareze, E. da R. (2015). Oxidation of potato starch with different sodium hypochlorite concentrations and its effect on biodegradable films. LWT, 60(2, Part 1), 714-720. https://doi.org/10.1016/j.lwt.2014.10.052
Guo, K., Lin, L., Fan, X., Zhang, L., & Wei, C. (2018). Comparison of structural and functional properties of starches from five fruit kernels. Food Chemistry, 257, 75-82. https://doi.org/10.1016/j.foodchem.2018.03.004
Halal, S. L. M. E., Colussi, R., Pinto, V. Z., Bartz, J., Radunz, M., Carreño, N. L. V., Dias, A. R. G., & Zavareze, E. da R. (2015). Structure, morphology and functionality of acetylated and oxidised barley starches. Food Chemistry, 168, 247-256. https://doi.org/10.1016/j.foodchem.2014.07.046
Han, F., Liu, M., Gong, H., Lü, S., Ni, B., & Zhang, B. (2012). Synthesis, characterization and functional properties of low substituted acetylated corn starch. International Journal of Biological Macromolecules, 50(2), 1026-1034. https://doi.org/10.1016/j.ijbiomac.2012.02.030
Handayani, P. A., Devi, A. L., & Ganisha, N. A. (2023). Optimization of the Elongation of Bioplastic from Durian Seed Starch Using Response Surface Methodology. IOP Conference Series: Earth and Environmental Science, 1203(1), 012002. https://doi.org/10.1088/1755-1315/1203/1/012002
Haq, F., Yu, H., Wang, L., Teng, L., Haroon, M., Khan, R. U., Mehmood, S., Bilal-Ul-Amin, Ullah, R. S., Khan, A., & Nazir, A. (2019). Advances in chemical modifications of starches and their applications. Carbohydrate Research, 476, 12-35. https://doi.org/10.1016/j.carres.2019.02.007
Hassan, L. G., Agwamba, E., Achor, M., Izuagie, T., Tsafe, A. I., R. U. Wasagu, K. J. U., & Sani, N. A. (2015). Investigation into Native Mango Starch Carboxymethylation. International Journal of Science for Global Sustainability, 1(1), Article 1.
Heinze, T., Liebert, T., Heinze, U., & Schwikal, K. (2004). Starch derivatives of high degree of functionalization 9: Carboxymethyl starches. Cellulose, 11(2), 239-245. https://doi.org/10.1023/B:CELL.0000025386.68486.a4
Hornung, P. S., Rosa da Silveira Lazzarotto, S., Bellettini, M. B., Lazzarotto, M., Beta, T., Ribani, R. H., & Schnitzler, E. (2018). Novel Oxidized and UV-Irradiated Araucaria angustifolia Pine Seed Starch for Enhanced Functional Properties. Starch, 71(3-4), 1800140. https://doi.org/10.1002/star.201800140
Ibikunle, A. A., Sanyaolu, N. O., Yussuf, S. T., Ogunneye, A. L., Badejo, O. A., & Olaniyi, O. M. (2019). Effects of chemical modification on functional and physical properties of African star apple kernel (Chrysophyllum albidnum) starch. African Journal of Pure and Applied Chemistry, 13(1), 1-11. https://doi.org/10.5897/AJPAC2018.0764
Jiménez-Hernández, J., Meneses-Esparza, F., Rosendo-Escobar, J., Vivar-Vera, M. A., Bello-Pérez, L. A., & García-Suárez, F. J. (2011). Extracción y caracterización del almidón de las semillas de Enterolobium cyclocarpum Extraction and characterization of starch from Enterolobium cyclocarpum seeds. CyTA - Journal of Food, 9(2), 89-95. https://doi.org/10.1080/19476331003743626
Kaur, J., Borah, A., Chutia, H., & Gupta, P. (2023). Extraction, modification, and characterization of native litchi seed (Litchi chinesis Sonn.) starch. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.12913
Kaur, L., Singh, N., & Singh, J. (2004). Factors influencing the properties of hydroxypropylated potato starches. Carbohydrate Polymers, 55(2), 211-223. https://doi.org/10.1016/j.carbpol.2003.09.011
Kaur, M., & Bhullar, G. K. (2016). Partial Characterization of Tamarind (Tamarindus indica L.) Kernel Starch Oxidized at Different Levels of Sodium Hypochlorite. International Journal of Food Properties, 19(3), 605-617. https://doi.org/10.1080/10942912.2015.1038722
Kaur, R., Bobade, H., Sachdev, P. A., & Kaur, S. (2024). Chapter 3 -Jackfruit kernel starch-composition, structure, properties and modifications. En J. M. Lorenzo & S. P. Bangar (Eds.), Non-Conventional Starch Sources (pp. 61-101). Academic Press. https://doi.org/10.1016/B978-0-443-18981-4.00003-3
Khanoonkon, N., Yoksan, R., & Ogale, A. A. (2016). Morphological characteristics of stearic acid-grafted starch-compatibilized linear low density polyethylene/thermoplastic starch blown film. European Polymer Journal, 76, 266-277. https://doi.org/10.1016/j.eurpolymj.2016.02.001
Kittipongpatana, N., Wiriyacharee, P., Phongphisutthinant, R., Chaipoot, S., Somjai, C., & Kittipongpatana, O. S. (2021). Resistant Starch Contents of Starch Isolated from Black Longan Seeds. Molecules, 26(11), Article 11. https://doi.org/10.3390/molecules26113405
Kong, X., Yang, W., Zuo, Y., Dawood, M., & He, Z. (2023). Characteristics of physicochemical properties, structure and in vitro digestibility of seed starches from five loquat cultivars. International Journal of Biological Macromolecules, 253, 126675. https://doi.org/10.1016/j.ijbiomac.2023.126675
Kulkarni, S. D., Sinha, B. N., & Jayaram Kumar, K. (2013). Synthesis, characterization and evaluation of release retardant modified starches of Lagenaria siceraria seeds. International Journal of Biological Macromolecules, 61, 396-403. https://doi.org/10.1016/j.ijbiomac.2013.07.027
Kumar, K. J., Varma, Ch. A. K., & Panpalia, S. G. (2014). Physicochemical and release characteristics of acetylated Indian palmyrah retro-graded shoot starch. International Journal of Biological Macromo-lecules, 69, 108-113. https://doi.org/10.1016/j.ijbiomac.2014.05.023
Lacerda, L. G., Colman, T. A. D., Bauab, T., da Silva Carvalho Filho, M. A., Demiate, I. M., de Vasconcelos, E. C., & Schnitzler, E. (2014). Thermal, structural and rheological properties of starch from avocado seeds (Persea americana, Miller) modified with standard sodium hypochlorite solutions. Journal of Thermal Analysis and Calorimetry, 115(2), 1893-1899. https://doi.org/10.1007/s10973-013-3349-z
Lawal, O. S., Ogundiran, O. O., Awokoya, K., & Ogunkunle, A. O. (2008). The low-substituted propylene oxide etherified plantain (Musa paradisiaca normalis) starch: Characterization and functional parameters. Carbohydrate Polymers, 74(3), 717-724. https://doi.org/10.1016/j.carbpol.2008.04.039
Lewandowicz, J., Le Thanh-Blicharz, J., & Szwengiel, A. (2022). The Effect of Chemical Modification on the Rheological Properties and Structure of Food Grade Modified Starches. Processes, 10(5), Article 5. https://doi.org/10.3390/pr10050938
Lin, D., Zhou, W., Yang, Z., Zhong, Y., Xing, B., et al. (2019). Study on physicochemical properties, digestive properties and application of acetylated starch in noodles. International Journal of Biological Macromolecules, 128, 948-956. https://doi.org/10.1016/j.ijbiomac.2019.01.176
Lin, D., Zhou, W., Zhao, J., Lan, W., Chen, R., et al. (2017). Study on the synthesis and physicochemical properties of starch acetate with low substitution under microwave assistance. International Journal of Biological Macromolecules, 103, 316-326. https://doi.org/10.1016/j.ijbiomac.2017.05.056
Liu, J., Wang, B., Lin, L., Zhang, J., Liu, W., Xie, J., & Ding, Y. (2014). Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocolloids, Complete, 36, 45-52. https://doi.org/10.1016/j.foodhyd.2013.08.013
Luo, W., Li, B., Zhang, Y., Tan, L., Hu, C., Huang, C., Chen, Z., & Huang, L. (2023). Unveiling the retrogradation mechanism of a novel high amylose content starch-Pouteria campechiana seed. Food Chemistry: X, 18, 100637. https://doi.org/10.1016/j.fochx.2023.100637
Magallanes-Cruz, P. A., Duque-Buitrago, L. F., & del Rocío Martínez-Ruiz, N. (2023). Native and modified starches from underutilized seeds: Characteristics, functional properties and potential applications. Food Research International, 169, 112875. https://doi.org/10.1016/j.foodres.2023.112875
Manzoor, A., & Ahmad, S. (2024). Chapter 4 - Longan seed starch: Structure, functionality and applications. En J. M. Lorenzo & S. P. Bangar (Eds.), Non-Conventional Starch Sources (pp. 103-121). Academic Press. https://doi.org/10.1016/B978-0-443-18981-4.00004-5
Martins, S. H. F., Pontes, K. V., Fialho, R. L., & Fakhouri, F. M. (2022). Extraction and characterization of the starch present in the avocado seed (Persea americana mill) for future applications. Journal of Agriculture and Food Research, 8, 100303. https://doi.org/10.1016/j.jafr.2022.100303
Masina, N., Choonara, Y. E., Kumar, P., du Toit, L. C., Govender, M., Indermun, S., & Pillay, V. (2017). A review of the chemical modification techniques of starch. Carbohydrate Polymers, 157, 1226-1236. https://doi.org/10.1016/j.carbpol.2016.09.094
Mendes, M. L. M., Bora, P. S., & Ribeiro, A. P. L. (2012). Propriedades morfológicas e funcionais e outras características da pasta do amido nativo e oxidado da amêndoa do caroço de manga (Mangifera indica L), variedade Tommy Atkins. Rev. Inst. Adolfo Lutz, 76-84.
Mollega, S., Barrios, S. E., Feijoo, J. L., Contreras, J. M., MÜller, A. J., & López-Carrasquero, F. (2011). Modificación química de almidón de yuca nativo mediante la reacción de carboximetilación en medio acuoso. Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 26(1), 117-128.
Muljana, H., Picchioni, F., Heeres, H. J., & Janssen, L. P. B. M. (2010). Green starch conversions: Studies on starch acetylation in densified CO2. Carbohydrate Polymers, 82(3), 653-662. https://doi.org/10.1016/j.carbpol.2010.05.032
Musa, S. H., & Sagagi, B. S. (2023). Extraction and some characteristics of mango seed kernel starch for industrial applications / Saidu Hassan Musa and Balarabe Sarki Sagagi. Science Letters (ScL), 17(2), Article 2.
Naknaen, P. (2014). Physicochemical, Thermal, Pasting and Microstructure Properties of Hydroxypropylated Jackfruit Seed Starch Prepared by Etherification with Propylene Oxide. Food Biophysics, 9(3), 249-259. https://doi.org/10.1007/s11483-014-9347-2
Naknaen, P., Tobkaew, W., & Chaichaleom, S. (2017). Properties of jackfruit seed starch oxidized with different levels of sodium hypochlorite. https://doi.org/10.1080/10942912.2016.1191868
Navarrete-Tumbaco, C. J., Mezones-Santana, J. A., Ponce, W., Brito, B., Viera, W., Mosquera, A. C., & Riera, M. A. (2023). Obtención y caracterización de bioplásticos a partir de almidón acetilado de semillas de aguacate. Avances en Química, 18(1), Article 1.
Nawaz, H., Waheed, R., Nawaz, M., Shahwar, D., Nawaz, H., Waheed, R., Nawaz, M., & Shahwar, D. (2020). Physical and Chemical Modifications in Starch Structure and Reactivity. En Chemical Properties of Starch. IntechOpen. https://doi.org/10.5772/intechopen.88870
Nayak, P., Rayaguru, K., Brahma, S., Routray, W., & Dash, S. K. (2021). Standardization of process protocol for isolation of starch from mango kernel and its characterization. Journal of the Science of Food and Agriculture, 102(7), 2813-2825. https://doi.org/10.1002/jsfa.11622
Nguyen, T. K., That, N. T. T., Nguyen, N. T., & Nguyen, H. T. (2022). Development of Starch-Based Bioplastic from Jackfruit Seed. Advances in Polymer Technology, 2022, e6547461. https://doi.org/10.1155/2022/6547461
Oderinde, A. A., Ibikunle, A. A., Bakre, L. G., & Babarinde, N. A. A. (2023). Effects of Acetylation, Acid-thinning and Oxidation on Chrysophyllum albidum (African Star Apple) Kernel Native Starch. Chemical Papers. https://doi.org/10.1007/s11696-023-02870-9
Oh, S.-M., Kim, H., Bae, J.-E., Ye, S.-J., Kim, B.-Y., Choi, H. D., Choi, H.-W., & Baik, M.-Y. (2019). Physicochemical and retrogradation properties of modified chestnut starches. Food Science and Biotechnology, 28(6), 1723-1731. https://doi.org/10.1007/s10068-019-00622-8
Okekunle, M. O., Adebowale, K. O., Olu-Owolabi, B. I., & Lamprecht, A. (2020). Physicochemical, morphological and thermal properties of oxidized starches from Lima bean (Phaseolus lunatus). Scientific African, 8, e00432. https://doi.org/10.1016/j.sciaf.2020.e00432
Olawoye, B., Jolayemi, O. S., Akinyemi, T. Y., Nwaogu, M., Oluwajuyitan, T. D., Popoola-Akinola, O. O., Fagbohun, O. F., & Akanbi, C. T. (2023). Modification of Starch. En V. S. Sharanagat, D. C. Saxena, K. Kumar, & Y. Kumar (Eds.), Starch: Advances in Modifications, Technologies and Applications (pp. 11-54). Springer International Publishing. https://doi.org/10.1007/978-3-031-35843-2_2
Oluwajuyitan, T. D. (2024). Chapter 1 - Avocado seed starch: Structure, functionality, and applications. En J. M. Lorenzo & S. P. Bangar (Eds.), Non-Conventional Starch Sources (pp. 3-19). Academic Press. https://doi.org/10.1016/B978-0-443-18981-4.00001-X
Pech-Cohuo, S. C., Hernandez-Colula, J., Gonzalez-Canche, N. G., Salgado-Transito, I., Uribe-Calderon, J., Cervantes-Uc, J. M., Cuevas-Bernardino, J. C., Ayora-Talavera, T., & Pacheco, N. (2021). Starch from Ramon seed (Brosimum alicastrum) obtained by two extraction methods. MRS Advances, 6(38), 875-880. https://doi.org/10.1557/s43580-021-00134-w
Pérez-Pacheco, E., Estrada-León, R. J., Duch, E. S., Bello-Pérez, L. A., Betancur-Ancona, D., & Moo-Huchin, V. M. (2017). Partial characterization of starch obtained from Ramon (Brosimum alicastrum Swartz), oxidized under different conditions. Starch - Stärke, 69(5-6), 1600233. https://doi.org/10.1002/star.201600233
Pu, H., Chen, L., Li, X., Xie, F., Yu, L., & Li, L. (2011). An Oral Colon-Targeting Controlled Release System Based on Resistant Starch Acetate: Synthetization, Characterization, and Preparation of Film-Coating Pellets. Journal of Agricultural and Food Chemistry, 59(10), 5738-5745. https://doi.org/10.1021/jf2005468
Rahman, S., S, S., B, T. A., & Mahendradatta, M. (2017). The Chemical Contents of the Starch of Palado Seed (Aglaia sp) with Pregelatinization, Cross-linking, and Acetylation Modifications. International Journal of Sciences: Basic and Applied Research (IJSBAR), 32(3), Article 3.
Ramírez-Brewer, D., Méndez, D. A., Garcia-Zapateiro, L. A., López-Rubio, A., & Fabra, M. J. (2024). Rheological properties, microstructure and stability of oil-in-water emulsions prepared with mango kernel starch (var. Sugar and Tommy). LWT, 194, 115802. https://doi.org/10.1016/j.lwt.2024.115802
Rincón, A. M., Lizet Bou Rached, L. E., & Aragoza, F. P. (2007). Efecto de la acetilación y oxidación sobre algunas propiedades del almidón de semillas de Fruto de pan (Artocarpus altilis). Archivos Latinoamericanos de Nutrición, 57(3), 287-294.
Saartrat, S., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2005). Paste and gel properties of low-substituted acetylated canna starches. Carbohydrate Polymers, 61(2), 211-221. https://doi.org/10.1016/j.carbpol.2005.05.024
Saleh, N. A., Nordin, R., Ahmad, A. A., & Fazial, F. F. (2023). Physicochemical characterization of starch from mango seed kernel extracted using different methods. AIP Conference Proceedings, 2703(1), 080006. https://doi.org/10.1063/5.0117134
Sangseethong, K., Ketsilp, S., & Sriroth, K. (2005). The Role of Reaction Parameters on the Preparation and Properties of Carboxymethyl Cassava Starch. Starch, 57(2), 84-93. https://doi.org/10.1002/star.200400302
Santos, G. P., Miranda, B. M., Di-Medeiros, M. C. B., Almeida, V. O., Ferreira, R. D., Morais, D. A. B. de, Queiroz, D. L. A., Leles, M. I. G., Lião, L. M., & Fernandes, K. F. (2024). The potential exploitation of the Malay-red apple (Syzygium malaccense) seed as source of a phosphorylated starch. Carbohydrate Research, 535, 109008. https://doi.org/10.1016/j.carres.2023.109008
Santoso, B., Pratama, F., Hamzah, B., & Pambayun, R. (2017). Karakteristik Fisik dan Kimia Pati Ganyong dan Gadung Termodifikasi Metode Ikatan Silang. agriTECH, 35(3), Article 3. https://doi.org/10.22146/agritech.9337
Sharma, M., Bains, A., Sridhar, K., Inbaraj, B. S., Ali, N., Attia, S. M., Patil, S., Chawla, P., & Sharma, M. (2024). Exploring the Structural, Thermal, and Protective Potential of Loquat Seed Starch and Flax Seed Oil Nanoemulsion Coating on Strawberry. Starch, 2300166. https://doi.org/10.1002/star.202300166
Shubeena, A., Wani, I. A., Gani, A., Sharma, P., Wani, T. A., Masoodi, F. A., Hamdani, A., & Muzafar, S. (2015). Effect of acetylation on the physico-chemical properties of Indian Horse Chestnut (Aesculus indica L.) starch. Starch, 67(3-4), 311-318. https://doi.org/10.1002/star.201400156
Silva, E. K., Anthero, A. G. da S., Emerick, L. B., Zabot, G. L., Hubinger, M. D., & Meireles, M. A. A. (2022). Low-frequency ultrasound-assisted esterification of Bixa orellana L. seed starch with octenyl succinic anhydride. International Journal of Biological Macromolecules, 207, 1-8. https://doi.org/10.1016/j.ijbiomac.2022.02.090
Simsek, S., Ovando-Martínez, M., Whitney, K., & Bello-Pérez, L. A. (2012). Effect of acetylation, oxidation and annealing on physicochemical properties of bean starch. Food Chemistry, 134(4), 1796-1803. https://doi.org/10.1016/j.foodchem.2012.03.078
Singh, J., Kaur, L., & McCarthy, O. J. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids, 21(1), 1-22. https://doi.org/10.1016/j.foodhyd.2006.02.006
Souza, J. C. A. de, Macena, J. F. F., Andrade, I. H. P., Camilloto, G. P., & Cruz, R. S. (2021). Functional characterization of mango seed starch (Mangifera indica l.). Research, Society and Development, 10(3), Article 3. https://doi.org/10.33448/rsd-v10i3.10118
Spier, F., Zavareze, E. da R., Marques e Silva, R., Elias, M. C., & Dias, A. R. G. (2013). Effect of alkali and oxidative treatments on the physicochemical, pasting, thermal and morphological properties of corn starch. Journal of the Science of Food and Agriculture, 93(9), 2331-2337. https://doi.org/10.1002/jsfa.6049
Thory, R., & Sandhu, K. S. (2017). A Comparison of mango kernel starch with a novel starch from litchi (Litchi chinensis) kernel: Physicochemical, morphological, pasting, and rheological properties. International Journal of Food Properties, 20(4), 911-921. https://doi.org/10.1080/10942912.2016.1188403
Tung, N. T., Thuy, L. T. H., Luong, N. T., Van Khoi, N., Ha, P. T. T., & Thang, N. H. (2021). The molecular structural transformation of jackfruit seed starch in hydrogen peroxide oxidation condition. Journal of the Indian Chemical Society, 98(11), 100192. https://doi.org/10.1016/j.jics.2021.100192
Van, C. K., Nguyen, P. N. T., Tran, T. Y. N., Mai, H. C., Tran, T. L., & Nguyen, T. Q. (2021). Carboxymethyl Jackfruit Seed Starch: Synthesis, characterization, and influence of reaction parameters. IOP Conference Series: Materials Science and Engineering, 1092(1), 012081. https://doi.org/10.1088/1757-899X/1092/1/012081
Vanier, N. L., El Halal, S. L. M., Dias, A. R. G., & da Rosa Zavareze, E. (2017). Molecular structure, functionality and applications of oxidized starches: A review. Food Chemistry, 221, 1546-1559. https://doi.org/10.1016/j.foodchem.2016.10.138
Vellaisamy, A. J., Guruchandran, S., Bakshi, A., Muninathan, C., & Ganesan, N. D. (2021). Study on enhanced mechanical, barrier and optical properties of chemically modified mango kernel starch films. Packaging Technology and Science, 34(8), 485-495. https://doi.org/10.1002/pts.2574
Wang, M., Wu, Y., Liu, Y., & Ouyang, J. (2020). Effect of Ultrasonic and Microwave Dual-Treatment on the Physicochemical Properties of Chestnut Starch. Polymers. https://doi.org/10.3390/polym12081718
Wang, X., Huang, L., Zhang, C., Deng, Y., Xie, P., Liu, L., & Cheng, J. (2020). Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. Carbohydrate Polymers, 240, 116292. https://doi.org/10.1016/j.carbpol.2020.116292
Wiberg, K. B., & Rablen, P. R. (1993). Substituent effects. 5. Vinyl and ethynyl derivatives. An examination of the interaction of amino and hydroxy groups with carbon-carbon double and triple bonds. Journal of the American Chemical Society, 115(20), 9234-9242. https://doi.org/10.1021/ja00073a044
Wong, K. T., Poh, G. Y. Y., Goh, K. K. T., Wee, M. S. M., & Jeyakumar Henry, C. (2021). Comparison of physicochemical properties of jackfruit seed starch with potato and rice starches. International Journal of Food Properties, 24(1), 364-379. https://doi.org/10.1080/10942912.2021.1885439
Xiao, H., Lin, Q., Liu, G.-Q., Wu, Y., Tian, W., Wu, W., & Fu, X. (2011). Physicochemical properties of chemically modified starches from different botanical origin. Scientific Research and Essays, 6(21), 4517-4525. https://doi.org/10.5897/SRE11.618
Xie, F., Zhang, H., Xiong, Z., Wu, Y., & Ai, L. (2022). Effects and mechanism of sucrose on retrogradation, freeze–thaw stability, and texture of corn starch–tamarind seed polysaccharide complexes. Journal of Food Science, 87(2), 623-635. https://doi.org/10.1111/1750-3841.16006
Yaowiwat, N., Poomanee, W., Leelapornpisid, P., & Sripatanakul, W. (2024). Potential use of Thai mango (Mangifera indica Linn. Cultivar Chok-Anan) seed porous starch for retention of aroma compounds from coffee extract. International Journal of Biological Macromolecules, 265, 131033. https://doi.org/10.1016/j.ijbiomac.2024.131033
Yepes, D. M. (2015). Acetilación enzimática de almidones: Una opción de valor agregado. Tumbaga, 1(10), 6.
Yu-Fang, C., Kaur, L., & Singh, J. (2018). Chapter 7—Chemical Modification of Starch. En M. Sjöö & L. Nilsson (Eds.), Starch in Food (Second Edition) (pp. 283-321). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100868-3.00007-X
Yusoff, M. S., Aziz, H. A., Zamri, M. F. M. A., Suja’, F., Abdullah, A. Z., & Basri, N. E. A. (2018). Floc behavior and removal mechanisms of cross-linked Durio zibethinus seed starch as a natural flocculant for landfill leachate coagulation-flocculation treatment. Waste Management, 74, 362-372. https://doi.org/10.1016/j.wasman.2018.01.016
Zhang, X., Zhao, L., Zhou, W., Liu, X., Hu, Z., & Wang, K. (2022). Variations in the Multilevel Structure, Gelatinization and Digestibility of Litchi Seed Starches from Different Varieties. Foods, 11(18), Article 18. https://doi.org/10.3390/foods11182821
Zhang, Y., Li, G., Wu, Y., Yang, Z., & Ouyang, J. (2019). Influence of amylose on the pasting and gel texture properties of chestnut starch during thermal processing. Food chemistry. https://doi.org/10.1016/j.foodchem.2019.05.070
Zhang, Y., Zhu, K., He, S., Tan, L., & Kong, X. (2016). Characterizations of high purity starches isolated from five different jackfruit cultivars. Food Hydrocolloids, 52, 785-794. https://doi.org/10.1016/j.foodhyd.2015.07.037
Zhang, Y., Zuo, H., Xu, F., Zhu, K., Tan, L., Dong, W., & Wu, G. (2021). The digestion mechanism of jackfruit seed starch using improved extrusion cooking technology. Food Hydrocolloids, 110, 106154. https://doi.org/10.1016/j.foodhyd.2020.106154
Zheng, Y., Hu, L., Ding, N., Liu, P., Yao, C., & Zhang, H. (2017). Physicochemical and structural characteristics of the octenyl succinic ester of ginkgo starch. International Journal of Biological Macromolecules, 94, 566-570. https://doi.org/10.1016/j.ijbiomac.2016.10.017
Zhou, F., Liu, Q., Zhang, H., Chen, Q., & Kong, B. (2016). Potato starch oxidation induced by sodium hypochlorite and its effect on functional properties and digestibility. International Journal of Biological Macromolecules, 84, 410-417. https://doi.org/10.1016/j.ijbiomac.2015.12.050
Zhou, X., Yang, J., & Qu, G. (2007). Study on synthesis and properties of modified starch binder for foundry. Journal of Materials Processing Technology, 183(2), 407-411. https://doi.org/10.1016/j.jmatprotec.2006.11.001
Zięba, T., Szumny, A., & Kapelko, M. (2011). Properties of retrograded and acetylated starch preparations: Part 1. Structure, susceptibility to amylase, and pasting characteristics. LWT, 44(5), 1314-1320. https://doi.org/10.1016/j.lwt.2010.12.018
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Scientia Agropecuaria
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).